全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

气相中FeO+催化甲烷氧化的理论研究

DOI: 10.1360/972013-1079, PP. 1117-1126

Keywords: 密度泛函,转化频率,自旋-轨道耦合,最低能量交叉点,能量跨度模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用密度泛函理论(DFT)B3LYP方法,研究了四重态和六重态势能面上FeO+(4Π+,6Σ+)催化甲烷氧化这一催化循环反应,整个反应过程共有6条反应路径,其中最低能量反应路径为路径6.该路径共有6处交叉点(crossingpoint,CP),其中CP1和CP3最为重要,优化交叉点CP1,CP3所对应的最低能量交叉点(minimumenergycrossingpoint,MECP).通过自旋-轨耦合的常数计算,得到MECP1,MECP3处的自旋-轨道耦合值分别为947.85和1372.51cm-1.MECP1和MECP3处的一次系间窜越几率分别为0.535,0.590.应用活化张力模型对基元反应中的竞争反应加以分析,解释了H原子转移的方向问题.运用Kozuch提出的能量跨度模型(energeticspanmodel)计算了循环反应的催化转化频率(turnoverfrequency,TOF).通过对各个中间体和过渡态的XTOF(TOF控制度)的计算,最终确定了催化循环过程中的决速过渡态(TDTS)为TS1-2,决速中间体(TDI)为IM9,并得到催化剂的TOF为5.6716×10-42s-1.

References

[1]  1 Schr?der D, Schwarz H. C-H and C-C bond activation by bare transition-metal oxide cations in the gas phase. Angew Chem Int Ed, 1995, 34: 1973-1995
[2]  2 吕玲玲, 刘新文, 袁琨, 等. Ti+离子和C2H4分子自旋禁阻反应中C-H键活化机理的理论研究. 中国科学B辑: 化学, 2009, 39: 403-411
[3]  5 Schr?der D, Shaik S, Schwarz H. Two-state reactivity as a new concept in organometallic chemistry. Acc Chem Res, 2000, 33: 139-145
[4]  6 Kozuch S, Shaik S. A combined kinetic-quantum mechanical model for assessment of catalytic cycles: Application to Cross-Coupling and Heck reactions. J Am Chem Soc, 2006, 128: 3355-3365
[5]  7 Koppen P A M, Bowers M T, Fisher E R, et al. Relative energetics of C-H and C-C bond activation of alkanes: Reactions of Ni+ and Fe+ with propane on the lowest energy (adiabatic) potential energy surfaces. J Am Chem Soc, 1994, 116: 3780-3791
[6]  8 Kozuch S, Shaik S. Kinetic-Quantum chemical model for catalytic cycles: The Haber-Bosch process and the effect of reagent concentration. J Phys Chem A, 2008, 112: 6032-6041
[7]  9 Kozuch S, Shaik S. How to conceptualize catalytic cycles? The energetic span model. Acc Chem Res, 2011, 44: 101-110
[8]  10 Uhe A, Kozuch S, Shaik S. Software news and update automatic analysis of computed catalytic cycles. J Comput Chem, 2011, 32: 978-985
[9]  11 Kozuch S, Martin J M L. What makes for a bad catalytic cycle? A theoretical study on the suzuki-miyaura reaction within the energetic span model. ACS Catal, 2011, 1: 246-253
[10]  12 Chiodo S, Russo N, Sicilia E. Newly developed basis sets for density functional calculations. J Comput Chem, 2005, 26: 175-183
[11]  13 Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03 (Revision-E.01). Pittsburgh PA: Gaussian Inc, 2003
[12]  14 Glendening E D, Badenhoop J K, Reed A E, et al. NBO 5.0, Theoretical Chemistry Institute. Madison: University of Wisconsin, 2001
[13]  15 Christiansen J A. The elucidation of reaction mechanisms by the method of intermediates in quasi-stationary concentrations. Adv Catal, 1953, 5: 311-353
[14]  16 Amatore C, Jutand A. Mechanistic and kinetic studies of palladium catalytic systems. J Organomet Chem, 1999, 576: 254-278
[15]  18 Campbell C T. Finding the rate-determining step in a mechanism: Comparing DeDonder relations with the "degree of rate control". J Catal, 2001, 204: 520-524
[16]  19 Granovsky A A. GAMESS: Version 7.0[EB/OL].[2009-06-. http://classic.Chem.Msu.Su/gran/gamess/index.html
[17]  24 Diefenbach A, Bickelhaupt F M. Activation of H-H, C-H, C-C, and C-Cl bonds by Pd(0) insight from the activation strain model. J Phys Chem A, 2004, 108: 8460-8466
[18]  26 Ermler W C, Ross R B, Christiansen P A. Spin-orbit coupling and other relativistic effects in atoms and molecules. Adv Quantum Chem, 1988, 19: 139-182
[19]  27 Danovich D, Shaik S. Spin-orbit coupling in the oxidative activation of H-H by FeO+. Selection rules and reactivity effects. J Am Chem Soc, 1997, 119: 1773-1786
[20]  28 Yoshizawa K, Shiota Y, Yamabe T. Abstraction of the hydrogen atom of methane by Iron-Oxo species: The concerted reaction path is energetically more favorable. Organometallics, 1998, 17: 2825-2831
[21]  29 管清梅, 崔宝秋, 赵东霞, 等. 原子-键电负性均衡方法融合进分子力场(ABEEM/MM)应用于蛋白质BPTI水溶液的分子动力学模拟. 科学通报, 2007, 52: 1739-1742
[22]  30 吕勤, 刘翠, 宫利东, 等. 水合锰(Ⅱ)结构的量子化学和ABEEM/MM研究. 科学通报, 2011, 56: 1530-1538
[23]  31 陈美玲, 王正武, 王海军, 等. 量子化学方法研究表面活性剂在气液界面上的吸附. 科学通报, 2007, 52: 521-524
[24]  32 吕钟, 周健, 孙志梅, 等. 稀土元素对镁合金结构及力学性能的影响. 科学通报, 2013, 58: 98-102
[25]  33 李克艳, 薛东风. 从原子到晶体的材料硬度研究. 科学通报, 2008, 53: 2186-2190
[26]  34 Yoshizawa K, Shiota Y, Yamabe T. Methane-methanol conversion by MnO+, FeO+, and CoO+: A theoretical study of catalytic selectivity. J Am Chem Soc, 1998, 120: 564-572
[27]  35 Shiota Y, Yoshizawa K. Methane-to-methanol conversion by first-row transition-metal oxide ions: ScO+, TiO+, VO+, CrO+, MnO+, FeO+, CoO+, NiO+, and CuO+. J Am Chem Soc, 2000, 112: 12317-12326
[28]  3 吕玲玲, 杨声, 王小芳, 等. 激发态1, 2-二硫环丁烯去活性和异构化机理的理论研究. 中国科学B辑: 化学, 2009, 39: 646-656
[29]  4 Nian J Y, Wang Y C, Ma W P, et al. Theoretical investigation for the cycle reaction of N2O(x1∑+) with CO(1∑+) catalyzed by IrOn+(n=1, 2) and utilizing the energy span model to study its kinetic information. J Phys Chem A, 2011, 115: 11023-11032
[30]  17 Campbell C T. Future directions and industrial perspectives micro-and macro-kinetics: Their relationship in heterogeneous catalysis. Topics Catal, 1994, 1: 353-366
[31]  20 Harvey J N, Aschi, M, Schwarz H, et al. The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theory Chem Acc, 1998, 99: 95-99
[32]  21 Harvey J N, Aschi M. Modelling spin-forbidden reactions: Recombination of carbon monoxide with iron tetracarbonyl. Faraday Discuss, 2003, 124: 129-143
[33]  22 Harvey J N. Understanding the kinetics of spin-forbidden chemical reactions. Phys Chem Chem Phys, 2007, 9: 331-343
[34]  23 Bickelhaupt F M. Understanding reactivity with Kohn-sham molecular orbital theory: E2-SN2 mechanistic spectrum and other concepts. J Comput Chem, 1999, 20: 114-128
[35]  25 Yoshizawa K, Shiota Y, Yamabe T. Intrinsic reaction coordinate analysis of the conversion of methane to methanol by an iron-oxo species: A study of crossing seams of potential energy surfaces. J Chem Phys, 1999, 111: 538-545

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133