全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

混噪驱动微生物生长随机动力学模型

DOI: 10.1360/972013-1078, PP. 1108-1116

Keywords: 微生物,动力学模型,噪声,噪声强度,相关时间

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了混噪驱动微生物生长随机动力学模型,并进一步开发了改进的Box-Mueller算法用于对该动力学模型进行模拟计算.分别考虑(1)在噪声相关时间不变时,噪声强度扩大2,5,10,20倍对模型的驱动影响作用;(2)在噪声强度不变时,噪声相关时间缩小10,100,1000倍对微生模型曲线浓度值的影响作用.噪声对该模型产生了明显影响,噪声强度与噪声的影响效果呈正相关,模型峰值及峰值所出现的时间随噪声强度的变化而变化;当相关时间大于2.8×10-6s时,白色噪声的影响作用很小可以直接忽略,而当其小于2.8×10-6s时,彩色噪声的影响作用可以忽略不计.噪声可以显著影响微生物细胞的生长速率,故可以通过改变噪声强度和相关时间来影响噪声的波动,从而更好地优化微生物降解动力学模型.

References

[1]  1 Kim S, Park S H, Ryu C S. Noise-induced phase transition in soft ising spins with a fluctuating interaction. Phys Rev E, 1997, 56: 3850
[2]  2 Zhong S, Xin H. Effects of colored noise on internal stochastic resonance in a chemical model system. Chem Phys Lett, 2001, 333: 133-138
[3]  5 宋杨, 赵同军, 刘金伟, 等. 高斯白噪声对神经元二维映射模型动力学的影响. 物理学报, 2006, 55: 4020-4025
[4]  6 Castro F, Wio H S, Abramson G. Colored-noised problem: A markovian interpolation procedure. Phys Rev E, 1995, 52:159-164
[5]  7 Charles W M, Heemink A W, Vanden B E. Coloured noise for dispersion of contaminants in shallow waters. Appl Math Model, 2009, 33: 1158-1172
[6]  8 El-Fadel M, Findikakis A N, Leckie J O. Numerical modelling of generation and transport of gas and heat in landfills I. Model formulation. Waste Manage Res, 1996, 14: 483-504
[7]  9 Nisbet R M, Muller E B, Lika K, et al. From molecules to ecosystems through dynamic energy budget models. J Anim Ecol, 2000, 69: 913-926
[8]  10 Vander M J. An introduction to dynamic energy budget (DEB) models with special emphasis on parameter estimation. J Sea Res, 2006, 56: 85-102
[9]  11 Brandt B W, Kelpin F D L, Van I M M, et al. Modelling microbial adaptation to changing availability of substrates. Water Res, 2004, 38: 1003-1013
[10]  12 Kovárová-Kovar K, Egli T. Growth kinetics of suspended microbial cells: From single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol R, 1998, 62: 646-666
[11]  13 Weber C L, Vanbriesen J M, Small M S. A stochastic regression approach to analyzing thermodynamic uncertainty in chemical speciation modeling. Environ Sci Technol, 2006, 40: 3872-3878
[12]  14 He L, Huang G H, Lu H W. A stochastic optimization model under modeling uncertainty and parameter certainty for groundwater remediation design—Part I. Model development. J Hazard Mater, 2010, 176: 521-526
[13]  17 He L, Huang G, Shen J. Degradation kinetics of dense nonaqueous phase liquids in the environment under impacts of mixed white and colored noises. Stoch Env Res Risk A, 2013: 1-9
[14]  18 Wilson C. Application of Coloured Noise as a Driving Force in the Stochastic Differential Equations. Vienna: Sycio Science Publisher, 2010. 43-58
[15]  21 Fox R F, Gatland I R, Roy R, et al. Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise. Phys Rev A, 1988, 38: 5938-5940
[16]  22 Marie E. Bacterial degradation of dissolved organic carbon in the water column. Doctor Dissertation. Amsterdam: Vrije Universiteit, 2008
[17]  3 Zhu R, Li Q S, Liu Z C. Explicit internal signal stochastic resonance in a chemical model driven by colored noise. Chem Phys Lett, 2002, 351: 410-416
[18]  4 徐耀群, 秦峰, 刘健. 白噪声对混沌神经网络的影响研究. 见: 张嗣瀛, 王福利, 主编. 中国控制与决策会议论文集(2). Singapore: IEEE, 2009
[19]  15 He L, Huang G H, Lu H W. A stochastic optimization model under modeling uncertainty and parameter certainty for groundwater remediation design: Part Ⅱ. Model application. J Hazard Mater, 2010, 176: 527-530
[20]  16 宋晓猛, 占车生, 夏军. 集成统计仿真技术和 SCE-UA 方法的水文模型参数优化. 科学通报, 2012, 57: 2530-2536
[21]  19 Stijnen J W, Heemink A W, Ponnambalam K. Numerical treatment of stochastic river quality models driven by colored noise. Water Resour Res, 2003, 39: 1053
[22]  20 Jin S, Shi Q Z. Transitions in a logistic growth model induced by noise coupling and noise colored. Commun Theor Phys, 2006, 46: 175

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133