全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

离子迁移谱检测痕量爆炸物新技术和应用

DOI: 10.1360/972013-1042, PP. 1079-1086

Keywords: 离子迁移谱,爆炸物,滴定结构离子迁移管,高分辨,离子源

Full-Text   Cite this paper   Add to My Lib

Abstract:

离子迁移谱具有分析速度快、灵敏度高、便携、操作简便等优点,成为爆炸物检测的主要方法之一,被广泛应用于机场安检和反恐等领域.本文简要介绍了离子迁移谱的原理、分类及特点;重点介绍了本课题组近期在离子迁移谱新技术及其在爆炸物检测中应用的新进展,包括新型滴定结构离子迁移谱研发、提高离子迁移谱分辨率方法、基于VUV灯的高效非放射性电离源研制等;最后,对离子迁移谱在爆炸物检测方面发展方向和前景进行了预测.

References

[1]  2 Ewing R G, Atkinson D A, Eiceman G A, et al. A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta, 2001, 54: 515-529
[2]  3 Armenta S, Alcala M, Blanco M. A review of recent, unconventional applications of ion mobility spectrometry (IMS). Analy Chim Acta, 2011, 703: 114-123
[3]  4 Eiceman G A, Karpas Z. Ion Mobility Spectrometry. 2nd ed. Boca Raton, FL: CRC Press, 2005
[4]  5 Borsdorf H, Eiceman G A. Ion mobility spectrometry: Principles and application. Appl Spectrosc Rev, 2006, 41: 323-375
[5]  6 Johnson P V, Beegle L W, Kim H I, et al. Ion mobility spectrometry in space exploration. Int J Mass Spectrom, 2007, 262: 1-15
[6]  8 Shvarsburg A A. Differential Ion Mobility Spectrometry. Boca Raton, FL: Taylor & Francis Group, LLC, 2009
[7]  9 Kolakowski B M, Mester Z. Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst, 2007, 132: 842-864
[8]  10 时迎国, 邵士勇, 李安林, 等. 迁移管的电场强度对真空紫外电离-离子迁移谱仪性能的影响. 分析化学, 2006, 34: 1353-1356
[9]  11 Dong C, Wang W G, Li H Y. Atmospheric pressure air direct current glow discharge ionization source for ion mobility spectrometry. Anal Chem, 2008, 80: 3925-3930
[10]  12 Du Y Z, Zhang W, Whitten W, et al. Membrane-extraction ion mobility spectrometry for in situ detection of chlorinated hydrocarbons in water. Anal Chem, 2010, 82: 4089-4096
[11]  13 Liang X X, Zhou Q H, Wang W G, et al. Sensitive detection of black powder by a stand-alone ion mobility spectrometer with an embedded titration region. Anal Chem, 2013, 85: 4849-4852
[12]  14 Kanu A B, Gribb M M, Hill H H. Predicting optimal resolving power for ambient pressure ion mobility spectrometry. Anal Chem, 2008, 80: 6610-6619
[13]  16 Du Y Z, Wang W G, Li H Y. Bradbury-nielsen-gate-grid structure for further enhancing the resolution of ion mobility spectrometry. Anal Chem, 2012, 84: 5700-5707
[14]  18 Chen C, Dong C, Du Y Z, et al. Bipolar ionization source for ion mobility spectrometry based on vacuum ultraviolet radiation induced photoemission and photoionization. Anal Chem, 2010, 82: 4151-4157
[15]  19 Cheng S S, Dou J, Wang W G, et al. Dopant-assisted negative photoionization ion mobility spectrometry for sensitive detection of explosives. Anal Chem, 85: 319-326
[16]  20 Seo Y J, Andaya A, Bleiholder C, et al. Differentiation of CC vs CXC chemokine dimers with GAG octasaccharide binding partners: An ion mobility mass spectrometry approach. J Am Chem Soc, 2013, 135: 4325-4332
[17]  21 Warnke S, Helden G, Pagel K. Protein structure in the gas phase: The influence of side-chain microsolvation. J Am Chem Soc, 2013, 135: 1177-1180
[18]  22 Zhou Q, Wang W, Cang H, et al. On-line measurement of propofol using membrane inlet ion mobility spectrometer. Talanta, 2012, 98: 241-246
[19]  1 Caygill J S, Davis F, Higson P J. Current trends in explosive detection techniques. Talanta, 2012, 88: 14-29
[20]  7 Vautz W, B?deker B, Baumbach J I, et al. An implementable approach to obtain reproducible reduced ion mobility. Int J Ion Mobil Spectr, 2009, 12: 47-57
[21]  15 Du Y Z, Wang W G, Li H Y. Resolution enhancement of ion mobility spectrometry by improving the three-zone features of the Bradbury-Nielsen gate. Anal Chem, 2011, 84: 1725-1731
[22]  17 Shumate C, Stlouis R H, Hill H H. Table of reduced mobility values from ambient pressure ion mobility spectrometry. J Chromatogr, 1986, 373: 141-173

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133