2 Ewing R G, Atkinson D A, Eiceman G A, et al. A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta, 2001, 54: 515-529
[2]
3 Armenta S, Alcala M, Blanco M. A review of recent, unconventional applications of ion mobility spectrometry (IMS). Analy Chim Acta, 2011, 703: 114-123
[3]
4 Eiceman G A, Karpas Z. Ion Mobility Spectrometry. 2nd ed. Boca Raton, FL: CRC Press, 2005
[4]
5 Borsdorf H, Eiceman G A. Ion mobility spectrometry: Principles and application. Appl Spectrosc Rev, 2006, 41: 323-375
[5]
6 Johnson P V, Beegle L W, Kim H I, et al. Ion mobility spectrometry in space exploration. Int J Mass Spectrom, 2007, 262: 1-15
[6]
8 Shvarsburg A A. Differential Ion Mobility Spectrometry. Boca Raton, FL: Taylor & Francis Group, LLC, 2009
[7]
9 Kolakowski B M, Mester Z. Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst, 2007, 132: 842-864
11 Dong C, Wang W G, Li H Y. Atmospheric pressure air direct current glow discharge ionization source for ion mobility spectrometry. Anal Chem, 2008, 80: 3925-3930
[10]
12 Du Y Z, Zhang W, Whitten W, et al. Membrane-extraction ion mobility spectrometry for in situ detection of chlorinated hydrocarbons in water. Anal Chem, 2010, 82: 4089-4096
[11]
13 Liang X X, Zhou Q H, Wang W G, et al. Sensitive detection of black powder by a stand-alone ion mobility spectrometer with an embedded titration region. Anal Chem, 2013, 85: 4849-4852
[12]
14 Kanu A B, Gribb M M, Hill H H. Predicting optimal resolving power for ambient pressure ion mobility spectrometry. Anal Chem, 2008, 80: 6610-6619
[13]
16 Du Y Z, Wang W G, Li H Y. Bradbury-nielsen-gate-grid structure for further enhancing the resolution of ion mobility spectrometry. Anal Chem, 2012, 84: 5700-5707
[14]
18 Chen C, Dong C, Du Y Z, et al. Bipolar ionization source for ion mobility spectrometry based on vacuum ultraviolet radiation induced photoemission and photoionization. Anal Chem, 2010, 82: 4151-4157
[15]
19 Cheng S S, Dou J, Wang W G, et al. Dopant-assisted negative photoionization ion mobility spectrometry for sensitive detection of explosives. Anal Chem, 85: 319-326
[16]
20 Seo Y J, Andaya A, Bleiholder C, et al. Differentiation of CC vs CXC chemokine dimers with GAG octasaccharide binding partners: An ion mobility mass spectrometry approach. J Am Chem Soc, 2013, 135: 4325-4332
[17]
21 Warnke S, Helden G, Pagel K. Protein structure in the gas phase: The influence of side-chain microsolvation. J Am Chem Soc, 2013, 135: 1177-1180
[18]
22 Zhou Q, Wang W, Cang H, et al. On-line measurement of propofol using membrane inlet ion mobility spectrometer. Talanta, 2012, 98: 241-246
[19]
1 Caygill J S, Davis F, Higson P J. Current trends in explosive detection techniques. Talanta, 2012, 88: 14-29
[20]
7 Vautz W, B?deker B, Baumbach J I, et al. An implementable approach to obtain reproducible reduced ion mobility. Int J Ion Mobil Spectr, 2009, 12: 47-57
[21]
15 Du Y Z, Wang W G, Li H Y. Resolution enhancement of ion mobility spectrometry by improving the three-zone features of the Bradbury-Nielsen gate. Anal Chem, 2011, 84: 1725-1731
[22]
17 Shumate C, Stlouis R H, Hill H H. Table of reduced mobility values from ambient pressure ion mobility spectrometry. J Chromatogr, 1986, 373: 141-173