全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

中国西南地区的“天空之岛”:Ⅰ系统地理学研究概述

DOI: 10.1360/csb2014-59-12-1055, PP. 1055-1068

Keywords: “天空之岛”,系统地理,中国西南山地

Full-Text   Cite this paper   Add to My Lib

Abstract:

“天空之岛”指大陆山区受到地理隔离的高海拔生境,由于气候、生境等在不同海拔上的异质性,“天空之岛”中的高山生物会由隔离引发形态和遗传结构等的改变.中国西南山地是生物多样性热点地区,本文将中国西南山地和邻近山区划归为中国西南地区的“天空之岛”,并围绕这一概念,对该区域的系统地理学主要研究成果进行了综述.中国西南山地“天空之岛”中物种的系统地理结构和进化模式受到复杂的地形地貌、气候和生境等因素的影响,更新世气候回旋、青藏高原隆升等地质事件对生物多样性和地理格局作用显著;另一方面,由于物种对地质事件的响应机制不同,它们可能具有相似或完全不同的地理格局.在此基础上,本文对未来的研究方向和方法提出建议结合比较系统地理学与其他学科的研究方法,检验地理、气候和生物因素在何种程度上影响地理格局、促进物种分化和生物多样性的产生.期望本文能为揭示生物多样性的发生机制提供研究思路,以解决生物多样性保护的关键性问题,即在全球气候变化和经费有限的环境下,如何最大化地保护该地区的生物多样性.

References

[1]  9 Coulon A, Cosson J F, Angibault J M, et al. Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: An individual-based approach. Mol Ecol, 2004, 13: 2841-2850
[2]  14 Downie D A. Phylogeography in a galling insect, grape phylloxera, Daktulosphaira vitifoliae (Phylloxeridae) in the fragmented habitat of the Southwest USA. J Biogeogr, 2004, 31: 1759-1768
[3]  15 Fu Y X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 1997, 147: 915-925
[4]  19 Mccormack J E, Smith T B. Niche expansion leads to small-scale adaptive divergence along an elevation gradient in a medium-sized passerine bird. Proc R Soc B-Biol Sci, 2008, 275: 2155-2164
[5]  24 Qin L, Meng X M, Kryukov A P, et al. Species and distribution patterns of small mammals in the Pingheliang Nature Reserve of Qinling Mountain, Shaanxi. Zool Res, 2007, 28: 231-242
[6]  25 Li Y M, Xu L, Ma Y, et al. The species richness of nonvolant mammals in Shennongjia Nature Reserve, Hubei Province, China: Distribution patterns along elevational gradient. Chin Biodivers, 2003, 11: 1-9
[7]  26 Zhao C, Wang C B, Ma X G, et al. Phylogeographic analysis of a temperate-deciduous forest restricted plant (Bupleurum longiradiatum Turcz.) reveals two refuge areas in China with subsequent refugial isolation promoting speciation. Mol Phylogenet Evol, 2013, 68: 628-643
[8]  34 Zhang R Z. Distribution of Mammalian Species in China. Beijing: China Forestry Publishing House, 1997
[9]  45 Pan T, Wu S L, He D M, et al. Effects of longitudinal range-gorge terrain on the eco-geographical pattern in Southwest China. J Geogr Sci, 2012, 22: 825-842
[10]  51 李吉均, 方小敏. 青藏高原隆起与环境变化研究. 科学通报, 1998, 43: 1569-1574
[11]  54 Clift P D, Blusztajn J, Nguyen A D. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam. Geophys Res Lett, 2006, 33: L19403
[12]  55 Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev Geophys, 1993, 31: 357-396
[13]  56 Peng Z G, Ho S Y W, Zhang Y G, et al. Uplift of the Tibetan Plateau: Evidence from divergence times of glyptosternoid catfishes. Mol Phylogenet Evol, 2006, 39: 568-572
[14]  58 He D K, Chen Y F. Biogeography and molecular phylogeny of the genus Schizothorax (Teleostei: Cyprinidae) in China inferred from cytochrome b sequences. J Biogeogr, 2006, 33: 1448-1460
[15]  60 Zhao X, Qu Y, Zhang Y, et al. Discovery of Shigu paleolake in the Lijiang area, northwestern Yunnan, China and its significance for the development of the modern Jinsha River valley. Geol Bull China, 2007, 26: 960-969
[16]  62 Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 2001, 292: 686-693
[17]  63 An Z, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 2001, 411: 62-66
[18]  64 邱铸鼎, 李传夔. 中国哺乳动物区系的演变与青藏高原的抬升. 中国科学D辑: 地球科学, 2004, 34: 845-854
[19]  66 Jia G D, Peng P A, Zhao Q H, et al. Changes in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China Sea. Geology, 2003, 31: 1093-1096
[20]  67 Xu X H, Fang X M. Rock magnetic record of Cenozoic lake sediments from the Linxia basin and aridification of the Asian inland. Front Earth Sci China, 2008, 2: 217-224
[21]  69 Li Z J, Yu G H, Rao D Q, et al. Phylogeography and demographic history of Babina pleuraden (Anura, Ranidae) in southwestern China. PLoS One, 2012, 7: e34013
[22]  70 Xie X F, Yan H F, Wang F Y, et al. Chloroplast DNA phylogeography of Primula ovalifolia in central and adjacent southwestern China: Past gradual expansion and geographical isolation. J Syst Evol, 2012, 50: 284-294
[23]  71 Hewitt G M. Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc B-Biol Sci, 2004, 359: 183-195
[24]  72 Soltis D E, Morris A B, Mclachlan J S, et al. Comparative phylogeography of unglaciated eastern North America. Mol Ecol, 2006, 15: 4261-4293
[25]  78 Yan F, Zhou W W, Zhao H T, et al. Geological events play a larger role than Pleistocene climatic fluctuations in driving the genetic structure of Quasipaa boulengeri (Anura: Dicroglossidae). Mol Ecol, 2013, 22: 1120-1133
[26]  79 Fazalova V, Nevado B, Peretolchina T, et al. When environmental changes do not cause geographic separation of fauna: Differential responses of Baikalian invertebrates. BMC Evol Biol, 2010, 10: 320
[27]  84 Zhou T H, Li S, Qian Z Q, et al. Strong phylogeographic pattern of cpDNA variation reveals multiple glacial refugia for Saruma henryi Oliv. (Aristolochiaceae), an endangered herb endemic to China. Mol Phylogenet Evol, 2010, 57: 176-188
[28]  90 Emerson K J, Merz C R, Catchen J M, et al. Resolving postglacial phylogeography using high-throughput sequencing. Proc Natl Acad Sci USA, 2010, 107: 16196-16200
[29]  100 Carstens B C, Richards C L. Integrating coalescent and ecological niche modeling in comparative phylogeography. Evolution, 2007, 61: 1439-1454
[30]  106 Joost S, Bonin A, Bruford M W, et al. A spatial analysis method (SAM) to detect candidate loci for selection: Towards a landscape genomics approach to adaptation. Mol Ecol, 2007, 16: 3955-3969
[31]  107 Dai Z J, Du J Z, Li J F, et al. Runoff characteristics of the Changjiang River during 2006: Effect of extreme drought and the impounding of the Three Gorges Dam. Geophys Res Lett, 2008, 35: L07406
[32]  108 Provan J, Maggs C A. Unique genetic variation at a species' rear edge is under threat from global climate change. Proc R Soc B-Biol Sci, 2012, 279: 39-47
[33]  89 Brito P, Edwards S V. Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica, 2009, 135: 439-455
[34]  91 Davey J W, Hohenlohe P A, Etter P D, et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet, 2011, 12: 499-510
[35]  92 Cronn R, Knaus B J, Liston A, et al. Targeted enrichment strategies for next-generation plant biology. Am J Bot, 2012, 99: 291-311
[36]  93 O'Neill E M, Schwartz R, Bullock C T, et al. Parallel tagged amplicon sequencing reveals major lineages and phylogenetic structure in the North American tiger salamander (Ambystoma tigrinum) species complex. Mol Ecol, 2013, 22: 111-129
[37]  94 McCormack J E, Faircloth B C. Next-generation phylogenetics takes root. Mol Ecol, 2013, 22: 19-21
[38]  95 Avise J C, Arnold J, Ball R M, et al. Intraspecific phylogeography: The mitochondrial-DNA bridge between population-genetics and systematics. Annu Rev Ecol Syst, 1987, 18: 489-522
[39]  96 Knowles L L. Statistical phylogeography. Annu Rev Ecol Evol Syst, 2009, 40: 593-612
[40]  97 Hickerson M J, Carstens B C, Cavender-Bares J, et al. Phylogeography's past, present, and future: 10 years after Avise, 2000. Mol Phylogenet Evol, 2010, 54: 291-301
[41]  98 Nielsen R, Beaumont M A. Statistical inferences in phylogeography. Mol Ecol, 2009, 18: 1034-1047
[42]  99 Bell R C, Mackenzie J B, Hickerson M J, et al. Comparative multi-locus phylogeography confirms multiple vicariance events in co- distributed rainforest frogs. Proc R Soc B-Biol Sci, 2012, 279: 991-999
[43]  101 Elith J, Phillips S J, Hastie T, et al. A statistical explanation of MaxEnt for ecologists. Divers Distrib, 2011, 17: 43-57
[44]  102 Knowles L L, Carstens B C, Keat M L. Coupling genetic and ecological-niche models to examine how past population distributions contribute to divergence. Curr Biol, 2007, 17: 940-946
[45]  103 Scoble J, Lowe A J. A case for incorporating phylogeography and landscape genetics into species distribution modelling approaches to improve climate adaptation and conservation planning. Divers Distrib, 2010, 16: 343-353
[46]  104 Yang Z H, Rannala B. Bayesian species delimitation using multilocus sequence data. Proc Natl Acad Sci USA, 2010, 107: 9264-9269
[47]  105 Zelditch M L, Swiderski D L, Sheets H. Geometric Morphometrics for Biologists: A Primer. San Diego: Elsevier Academic Press, 2004
[48]  109 Pfenninger M, Bálint M, Pauls S U. Methodological framework for projecting the potential loss of intraspecific genetic diversity due to global climate change. BMC Evol Biol, 2012, 12: 224
[49]  110 Bottrill M C, Joseph L N, Carwardine J, et al. Is conservation triage just smart decision making? Trends Ecol Evol, 2008, 23: 649-654
[50]  1 Heald W F. Sky islands of Arizona. Nat Hist, 1951, 60: 56-63
[51]  2 Mclaughlin S P. An overview of the flora of the Sky Islands, southeastern Arizona: Diversity, affinities, and insularity. In: DeBano L F, Gottfried G J, Hamre R H, et al. Biodiversity and Management of the Madrean Archipelago: The Sky Islands of Southwestern United States and Northwestern Mexico. USDA Forest Service General Technical Report RM-GTR-264, 1995. 60-70
[52]  3 Warshall P. The Madrean sky island archipelago: A planetary overview. In: Debano L F, Gottfried G J, Hamre R H, et al, tech coords. Biodiversity and Management of the Madrean Archipelago: The Sky Islands of Southwestern United States and Northwestern Mexico. USDA Forest Service General Technical Report RM-GTR-264, 1995. 6-18
[53]  4 McCormack J, Huang H, Knowle L. Sky islands. In: Gillespie R G, Clague D A, eds. Encyclopedia of Islands. Berkeley: University of California Press, 2009. 841-843
[54]  5 Hudson R R, Slatkin M, Maddison W P. Estimation of levels of gene flow from DNA sequence data. Genetics, 1992, 132: 583-589
[55]  6 Knowles L L. Did the Pleistocene glaciations promote divergence? Tests of explicit refugial models in montane grasshopprers. Mol Ecol, 2001, 10: 691-701
[56]  7 Dechaine E G, Martin A P. Historic cycles of fragmentation and expansion in Parnassius smintheus (Papilionidae) inferred using mitochondrial DNA. Evolution, 2004, 58: 113-127
[57]  8 Dechaine E G, Martin A P. Marked genetic divergence among sky island populations of Sedum lanceolatum (Crassulaceae) in the rocky mountains. Am J Bot, 2005, 92: 477-486
[58]  10 Browne R A, Ferree P M. Genetic structure of southern Appalachian "sky island" populations of the southern red-backed vole (Myodes gapperi). J Mammal, 2007, 88: 759-768
[59]  11 Hewitt G M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linnean Soc, 1996, 58: 247-276
[60]  12 Mccormack J E, Bowen B S, Smith T B. Integrating paleoecology and genetics of bird populations in two sky island archipelagos. BMC Biol, 2008, 6: 28
[61]  13 Bowie R C K, Fjeldsa J, Hackett S J, et al. Coalescent models reveal the relative roles of ancestral polymorphism, vicariance, and dispersal in shaping phylogeographical structure of an African montane forest robin. Mol Phylogenet Evol, 2006, 38: 171-188
[62]  16 Harpending H C. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol, 1994, 66: 591-600
[63]  17 Drummond A J, Rambaut A, Shapiro B, et al. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol, 2005, 22: 1185-1192
[64]  18 Wiens J J. Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution, 2004, 58: 193-197
[65]  20 Masta S E, Maddison W P. Sexual selection driving diversification in jumping spiders. Proc Natl Acad Sci USA, 2002, 99: 4442-4447
[66]  21 Zhao E, Yang D T. Amphibians and Reptiles of the Hengduan Mountain Region. Beijing: Sicence Press, 1997
[67]  22 Guo P, Liu Q, Li C, et al. Molecular phylogeography of Jerdon's pitviper (Protobothrops jerdonii): Importance of the uplift of the Tibetan Plateau. J Biogeogr, 2011, 38: 2326-2336
[68]  23 Qu Y H, Luo X, Zhang R Y, et al. Lineage diversification and historical demography of a montane bird Garrulax elliotii-implications for the Pleistocene evolutionary history of the eastern Himalayas. BMC Evol Biol, 2011, 11: 174
[69]  27 Zhang D C, Boufford D E, Ree R H, et al. The 29°N latitudinal line: An important division in the Hengduan Mountains, a biodiversity hotspot in Southwest China. Nord J Bot, 2009, 27: 405-412
[70]  28 李少娟, 何大明, 张一平. 纵向岭谷区降水量时空变化及其地域分异规律. 科学通报, 2007, 52: 59-73
[71]  29 Li B Y. Geomorphologic regionalization of the Hengduan Mountainous region. J Mt Res, 1989, 7: 13-20
[72]  30 Li X W, Li J. A preliminary floristic study on the seed plants from the region of Hengduan Mountain. Acta Bot Yunnan, 1993, 15: 217-231
[73]  31 Yao Y H, Zhang B P, Han F, et al. Diversity and geographical pattern of altitudinal belts in the Hengduan Mountains in China. J Mt Sci, 2010, 7: 123-132
[74]  32 Myers N, Mittermeier R A, Mittermeier C G, et al. Biodiversity hotspots for conservation priorities. Nature, 2000, 403: 853-858
[75]  33 Zhang R Z. Geological events and mammalian distribution in China. Acta Zool Sin, 2002, 48: 141-153
[76]  35 Li J, He Q X, Hua X, et al. Climate and history explain the species richness peak at mid-elevation for Schizothorax fishes (Cypriniformes: Cyprinidae) distributed in the Tibetan Plateau and its adjacent regions. Glob Ecol Biogeogr, 2009, 18: 264-272
[77]  36 Zhang M W, Rao D Q, Yang J X, et al. Molecular phylogeography and population structure of a mid-elevation montane frog Leptobrachium ailaonicum in a fragmented habitat of Southwest China. Mol Phylogenet Evol, 2010, 54: 47-58
[78]  37 Liu Q, Chen P, He K, et al. Phylogeographic study of Apodemus ilex (Rodentia: Muridae) in Southwest China. PLoS One, 2012, 7: e31453
[79]  38 Fan Z X, Liu S Y, Liu Y, et al. Phylogeography of the South China Field Mouse (Apodemus draco) on the southeastern Tibetan Plateau reveals high genetic diversity and glacial refugia. PLoS One, 2012, 7: e38184
[80]  39 Yang Z Y, Yi T S, Pan Y Z, et al. Phylogeography of an alpine plant Ligularia vellerea (Asteraceae) in the Hengduan Mountains. J Syst Evol, 2012, 50: 316-324
[81]  40 Zhu L F, Zhan X J, Meng T, et al. Landscape features influence gene flow as measured by cost-distance and genetic analyses: A case study for giant pandas in the Daxiangling and Xiaoxiangling Mountains. BMC Genet, 2010, 11: 72
[82]  41 Yang F S, Qin A L, Li Y F, et al. Great genetic differentiation among populations of Meconopsis integrifolia and its implication for plant speciation in the Qinghai-Tibetan Plateau. PLoS One, 2012, 7: e37196
[83]  42 Zhang T C, Comes H P, Sun H. Chloroplast phylogeography of Terminalia franchetii (Combretaceae) from the eastern Sino-Himalayan region and its correlation with historical river capture events. Mol Phylogenet Evol, 2011, 60: 1-12
[84]  43 Clark M K, Schoenbohm L M, Royden L H, et al. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics, 2004, 23: 1006-1029
[85]  44 Cheng J, Liu X, Gao Z, et al. Effect of the Tibetan Plateau uplifting on the geological environment of the Yunnan Plateau. Geoscience, 2001, 15: 290-296
[86]  46 Chen S D, Liu S Y, Liu Y, et al. Molecular phylogeny of asiatic short-tailed shrews, genus Blarinella Thomas, 1911 (Mammalia: Soricomorpha: Soricidae) and its taxonomic implications. Zootaxa, 2012, 3250: 43-53
[87]  47 Li R, Chen W, Tu L, et al. Rivers as barriers for high elevation amphibians: A phylogeographic analysis of the alpine stream frog of the Hengduan Mountains. J Zool, 2009, 277: 309-316
[88]  48 Zhang D R, Chen M Y, Murphy R W, et al. Genealogy and palaeodrainage basins in Yunnan Province: Phylogeography of the Yunnan spiny frog, Nanorana yunnanensis (Dicroglossidae). Mol Ecol, 2010, 19: 3406-3420
[89]  49 Chung S L, Lo C H, Lee T Y, et al. Diachronous uplift of the Tibetan Plateau starting 40 Ma ago. Nature, 1998, 394: 769-773
[90]  50 Wu F Y, Huang B C, Ye K, et al. Collapsed Himalayan-Tibetan orogen and the rising Tibetan Plateau. Acta Petrol Sin, 2008, 24: 1-30
[91]  52 Liu J Q, Wang Y J, Wang A L, et al. Radiation and diversification within the Ligularia-Cremanthodium-Parasenecio complex (Asteraceae) triggered by uplift of the Qinghai-Tibetan Plateau. Mol Phylogenet Evol, 2006, 38: 31-49
[92]  53 Liu J Q, Gao T G, Chen Z D, et al. Molecular phylogeny and biogeography of the Qinghai-Tibet Plateau endemic Nannoglottis (Asteraceae). Mol Phylogenet Evol, 2002, 23: 307-325
[93]  57 Che J, Zhou W W, Hu J S, et al. Spiny frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia. Proc Natl Acad Sci USA, 2010, 107: 13765-13770
[94]  59 Zhang T C, Comes H P, Sun H. Chloroplast phylogeography of Terminalia franchetii (Combretaceae) from the eastern Sino-Himalayan region and its correlation with historical river capture events. Mol Phylogenet Evol, 2011, 60: 1-12
[95]  61 Bennett K D. Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology, 1990, 16: 11-21
[96]  65 Qiang X K, Li Z X, Powell C M, et al. Magnetostratigraphic record of the Late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet. Earth Planet Sci Lett, 2001, 187: 83-93
[97]  68 He K, Li Y J, Brandley M C, et al. A multi-locus phylogeny of Nectogalini shrews and influences of the paleoclimate on speciation and evolution. Mol Phylogenet Evol, 2010, 56: 734-746
[98]  73 Hewitt G M. Post-glacial re-colonization of European biota. Biol J Linnean Soc, 1999, 68: 87-112
[99]  74 Rull V. Microrefugia. J Biogeogr, 2009, 36: 481-484
[100]  75 Gómez A, Lunt D H. Refugia within refugia: Patterns of phylogeographic concordance in the Iberian Peninsula. In: Weiss S, Ferrand N, eds. Phylogeography in Southern European Refugia: Evolutionary Perspectives on the Origins and Conservation of European Biodiversity. Dordrecht: Springer, 2007. 155-188
[101]  76 Igea J, Aymerich P, Fernandez-Gonzalez A, et al. Phylogeography and postglacial expansion of the endangered semi-aquatic mammal Galemys pyrenaicus. BMC Evol Biol, 2013, 13: 115
[102]  77 Yu G H, Zhang M W, Rao D Q, et al. Effect of pleistocene climatic oscillations on the phylogeography and demography of red knobby newt (Tylototriton shanjing) from southwestern China. PLoS One, 2013, 8: e56066
[103]  80 Wu C H, Li H P, Wang Y X, et al. Low genetic variation of the Yunnan hare (Lepus comus G. Allen 1927) as revealed by mitochondrial cytochrome b gene sequences. Biochem Genet, 2000, 38: 147-153
[104]  81 Zhao S C, Zheng P P, Dong S S, et al. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nat Genet, 2013, 45: 67-71
[105]  82 Liu J Q, Sun Y S, Ge X J, et al. Phylogeographic studies of plants in China: Advances in the past and directions in the future. J Syst Evol, 2012, 50: 267-275
[106]  83 Bennett K D, Provan J. What do we mean by ‘refugia’? Quat Sci Rev, 2008, 27: 2449-2455
[107]  85 Ponniah M, Hughes J M. The evolution of Queensland spiny mountain crayfish of the genus Euastacus. I. Testing vicariance and dispersal with interspecific mitochondrial DNA. Evolution, 2004, 58: 1073-1085
[108]  86 Irwin D E, Bensch S, Price T D. Speciation in a ring. Nature, 2001, 409: 333-337
[109]  87 Monahan W B, Pereira R J, Wake D B. Ring distributions leading to species formation: A global topographic analysis of geographic barriers associated with ring species. BMC Biol, 2012, 10: 20
[110]  88 Toews D P, Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol, 2012, 21: 3907-3930

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133