全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

大鼠在侧向冲击下的平衡调节行为

DOI: 10.1360/972013-1274, PP. 1249-1257

Keywords: 侧向冲击,平衡策略,大鼠,身体弯曲侧向跨步

Full-Text   Cite this paper   Add to My Lib

Abstract:

在外界的干扰下,动物可以实时地调整运动模式,来平衡外界的扰动以保持运动的平稳性.本文以短腿直立动物大鼠(Rattusnorregicus)为研究对象,用单摆分别冲击大鼠的胸外侧和腹外侧,由高速摄像机和三维运动反力测试系统同步记录大鼠受到冲击时的运动行为和受到的地面反力.研究大鼠受到侧向冲击的平衡调节策略.大鼠抗冲击的平衡调节策略与身体受冲击的部位有显著相关性.胸外侧受到冲击时,大鼠主要依靠类弹簧的身体迅速弯曲吸收能量.腹外侧受到冲击时,大鼠通过身体的侧摆和腿的外支撑,刚性地平衡侧向冲击力和力矩.通过身体的侧摆实现应急缓冲比身体弯曲的应急缓冲时间短,但是调整恢复到正常运动状态需要更多时间.研究动物在外界干扰下的身体平衡调节策略,可以为仿生机器人的鲁棒性设计提供参考.

References

[1]  1 Dickinson M H, Farley C T, Full R J, et al. How animals move: An integrative view. Science, 2000, 288: 100-106
[2]  3 毕树生, 宗光华. 关于21世纪初我国仿生机械与仿生制造的若干思考. 中国机械工程, 2001, 12: 1201-1204
[3]  4 Alexander D E. Unusual phase relationships between the forewings and hindwings in flying dragonflies. J Exp Biol, 1984, 109: 379-383
[4]  7 Jander J P. Mechanical Stability in Stick Insects When Walking Straight and Around Curves. Berlin: Paul Parey, 1985. 33-42
[5]  8 王周义, 王金童, 吉爱红, 等. 壁虎的运动行为与动力学研究: 竖直面内运动方向的影响. 科学通报, 2010, 56: 2339-2349
[6]  9 王周义, 王金童, 吉爱红, 等. 虎纹捕鸟蛛运动反力测试. 自然科学进展, 2009, 19: 883-888
[7]  10 Full R J, Koditschek D E. Templates and anchors: Neuromechanical hypotheses of legged locomotion on land. J Exp Biol, 1999, 202: 3325-3332
[8]  17 Full R J, Koehl M A R. Drag and lift on running insects. J Exp Biol, 1993, 176: 89-101
[9]  18 Jinfrich D L, Full R J. Dynamic stabilization of rapid hexapedal locomotion. J Exp Biol, 2002, 205: 2803-2823
[10]  22 Cavagna G A, Heglund N C, Taylor C R. Mechanical work in terrestrial locomotion: Two basic mechanisms for minimizing energy expenditure. Am J Phys-Regul Integr Comp Phys, 1977, 233: 243-261
[11]  23 Jayes A S, Alexander R. Mechanics of locomotion of dogs (Canis familiaris) and sheep (Ovis aries). J Zool, 1978, 185: 289-308
[12]  24 Chen J J, Peattie A M, Autumn K, et al. Differential leg function in a sprawled-posture quadrupedal trotter. J Exp Biol, 2006, 209: 249-259
[13]  25 Full R J, Tu M S. Mechanics of a rapid running insect: Two-, four-, and six-legged locomotion. J Exp Biol, 1991, 156: 215-231
[14]  26 Full R J, Blickhan R, Ting L H. Leg design in hexapedal runners. J Exp Biol, 1991, 158: 369-390
[15]  2 Lu Y X. Significance and progress of bionics. J Bionic Eng, 2004, 1: 1-3
[16]  5 Cruse H, Schwarze W. Mechanisms of coupling between the ipsilateral legs of a walking insect (Carausius morosus). J Exp Biol, 1988, 138: 455-469
[17]  6 Delcomyn F. Motor activity during searching and walking movements of cockroach legs. J Exp Biol, 1987, 133: 111-120
[18]  11 Full R J, Tu M S. Mechanics of six-legged runners. J Exp Biol, 1990, 148: 129-146
[19]  12 Raibert M H, Brown H B, Chepponis M. Experiments in balance with a 3D one-legged hopping machine. Inter J Robot Res, 1984, 3: 75-92
[20]  13 Ting L H, Blickhan R, Full R J. Dynamic and static stability in hexapedal runners. J Exp Biol, 1994, 197: 251-269
[21]  14 Rubin C T, Lanyon L E. Limb mechanics as a function of speed and gait: A study of functional strains in the radius and tibia of horse and dog. J Exp Biol, 182, 101: 187-211
[22]  15 Bauby C E, Kuo A D. Active control of lateral balance in human walking. J Biomech, 2000, 33: 1433-1440
[23]  16 Raibert M, Blankespoor K, Gabriel N, et al. BigDog, the rough-terrain quadruped robot. In: Proc 17th World Congr Intern Feder Autom Contr. Seoul, Korea, 2008, 7. 6-11
[24]  19 Wang Z Y, Wang J T, Ji A H, et al. Behavior and dynamics of gecko locomotion: The effects of moving directions on a vertical surface. Chin Sci Bull, 2011, 56: 573-583
[25]  20 Dai Z D, Wang Z Y, Ji A H. Dynamics of gecko locomotion: A force-measuring array to measure 3D reaction forces. J Exp Biol, 2011, 214: 703-708
[26]  21 吴强, 俞志伟, 吉爱红, 等.一种小型电阻应变式三维力传感器的仿真设计. 中国机械工程, 2011, 22: 1288-1293

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133