全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

AFM单分子力谱技术测量膜蛋白力学特性的研究进展

DOI: 10.1360/csb2014-59-13-1198, PP. 1198-1208

Keywords: 原子力显微镜,单分子力谱,膜蛋白,力学特性生物力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

膜蛋白在细胞生理活动中起着关键性的作用,是大部分药物的作用靶点.对膜蛋白进行研究不仅对理解生命活动的本质有着重要的价值,还可为疾病治疗和医药研发带来帮助.原子力显微镜(AFM)的出现为研究膜蛋白的结构提供了一种新的技术手段.AFM不仅可以对单个天然态膜蛋白分子的形貌结构进行高分辨率成像,同时还可通过将配体分子修饰到AFM针尖,利用单分子力谱(SMFS)技术对膜蛋白生理功能与活动行为(如配体结合、解折叠)中的力学特性进行直接测量,使得人们可以从分子生物力学方面来认识膜蛋白的结构和功能,是对传统结构生物学方法得到的蛋白质静态三维结构的重要补充.SMFS技术在测量膜蛋白力学特性方面取得了巨大的成功,为生命科学和医药卫生领域相关问题的解决提供了新的思路.本文结合作者在AFM病理瘤细胞表面抗体-抗原相互作用力测量方面的研究工作,介绍了SMFS技术的原理与方法,总结了近年来应用SMFS技术研究膜蛋白力学特性的进展,讨论了SMFS技术面临的挑战.

References

[1]  1 Muller D J, Engel A. Atomic force microscopy and spectroscopy of native membrane proteins. Nat Protoc, 2007, 2: 2191-2197
[2]  2 Bippes C A, Muller D J. High-resolution atomic force microscopy and spectroscopy of native membrane proteins. Rep Prog Phys, 2011, 74: 086601
[3]  3 Fotiadis D. Atomic force microscopy for the study of membrane proteins. Curr Opin Biotechnol, 2012, 23: 510-515
[4]  4 Yildirim M A, Goh K I, Cusick M E, et al. Drug-target network. Nat Biotechnol, 2007, 25: 1119-1126
[5]  7 Hopf T A, Colwell L J, Sheridan R, et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell, 2012, 149: 1607-1621
[6]  11 Bill R M, Henderson P J F, Iwata S, et al. Overcoming barriers to membrane protein structure determination. Nat Biotechnol, 2011, 29: 335-340
[7]  17 Groves J T, Kuriyan J. Molecular mechanisms in signal transduction at the membrane. Nat Struct Mol Biol, 2010, 17: 659-665
[8]  18 Fu R, Wang X, Li C, et al. In situ structural characterization of a recombinant protein in native Escherichia coli membranes with solid- state magic-angle-spinning NMR. J Am Chem Soc, 2011, 133: 12370-12373
[9]  19 Dupres V, Alsteens D, Andre G, et al. Fishing single molecules on live cells. Nano Today, 2009, 4: 262-268
[10]  20 Neuman K C, Nagy A. Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods, 2008, 5: 491-505
[11]  23 Ando T, Uchihashi T, Kodera N. High-speed AFM and applications to biomolecular systems. Ann Rev Biophys, 2013, 42: 393-414
[12]  24 Casuso I, Khao J, Chami M, et al. Characterization of the motion of membrane proteins using high-speed atomic force microscopy. Nat Nanotechnol, 2012, 7: 525-529
[13]  25 Kedrov A, Janovjak H, Sapra K T, et al. Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy. Ann Rev Biophys Biomol Struct, 2007, 36: 233-260
[14]  26 吕守芹, 龙勉. 分子动力学模拟与分子生物力学. 生物物理学报, 2012, 28: 6-14
[15]  27 Engel A, Gaub H E. Structure and mechanics of membrane proteins. Ann Rev Biochem, 2008, 77: 127-148
[16]  29 Barattin R, Voyer N. Chemical modifications of AFM tips for the study of molecular recognition events. Chem Commun, 2008, 1513-1532
[17]  30 Dupres V, Menozzi F D, Locht C, et al. Nanoscale mapping and functional analysis of individual adhesions on living bacteria. Nat Methods, 2005, 2: 515-520
[18]  31 Carvalho F A, Santos N C. Atomic force microscopy-based force spectroscopy-biological and biomedical applications. IUBMB Life, 2012, 64: 465-472
[19]  32 Grandbois M, Beyer M, Rief M, et al. How strong is a covalent bond? Science, 1999, 283: 1727-1730
[20]  46 Zhang J, Wu G, Song C, et al. Single molecular recognition force spectroscopy study of a luteinizing hormone-releasing hormone analogue as a carcinoma target drug. J Phys Chem B, 2012, 116: 13331-13337
[21]  47 Li Y, Qiao H, Yan W, et al. Molecular recognition force spectroscopy study of the dynamic interaction between aptamer GBI-10 and extracellular matrix protein tenascin-C on human glioblastoma cell. J Mol Recognit, 2013, 26: 46-50
[22]  48 Weiner G J. Rituximab: Mechanism of action. Semin Hematol, 2010, 47: 115-123
[23]  57 Dobson C M. Protein folding and misfolding. Nature, 2003, 426: 884-890
[24]  60 Oesterhelt F, Oesterhelt D, Pfeiffer M, et al. Unfolding pathways of individual bacteriorhodopsins. Science, 2000, 288: 143-146
[25]  63 Shi L, Howan K, Shen Q T, et al. Preparation and characterization of SNARE-containing nanodiscs and direct study of cargo release through fusion pores. Nat Protoc, 2013, 8: 935-948
[26]  64 Zocher M, Roos C, Wegmann S, et al. Single-molecule force spectroscopy from nanodiscs: An assay to quantify folding, stability, and interactions of native membrane proteins. ACS Nano, 2012, 6: 961-971
[27]  65 Thoma J, Bosshart P, Pfreundschuh M, et al. Out but not in: The large transmembrane b-barrel protein FhuA unfolds but cannot refold via b-hairpins. Structure, 2012, 20: 2185-2190
[28]  66 Taniguchi Y, Choi P J, Li G W, et al. Quantifying E.coli proteome and transcriptome with single-molecule sensitivity in single cells. Science, 2010, 329: 533-538
[29]  76 Lekka M, Gil D, Pogoda K, et al. Cancer cell detection in tissue sections using AFM. Arch Biochem Biophys, 2012, 518: 151-156
[30]  77 Taatjes D J, Quinn A S, Rand J H, et al. Atomic force microscopy: high resolution dynamic imaging of cellular and molecular structure in health and disease. J Cell Physiol, 2013, 228: 1949-1955
[31]  76 Lekka M, Gil D, Pogoda K, et al. Cancer cell detection in tissue sections using AFM. Arch Biochem Biophys, 2012, 518: 151-156
[32]  77 Taatjes D J, Quinn A S, Rand J H, et al. Atomic force microscopy: high resolution dynamic imaging of cellular and molecular structure inhealth and disease. J Cell Physiol, 2013, 228: 1949-1955
[33]  78 Alsteens D, Dupres V, Klotz S A, et al. Unfolding individual Als5p adhesion proteins on live cells. ACS Nano, 2009, 3: 1677-1682
[34]  79 Dufrene Y F, Evans E, Engel A, et al. Five challenges to bringing single-molecule force spectroscopy into living cells. Nat Methods, 2011,8: 123-127
[35]  5 Baker M. Making membrane proteins for structures: A trillion tiny tweaks. Nat Methods, 2010, 7: 429-433
[36]  6 Pieper U, Schlessinger A, Kloppmann E, et al. Coordinating the impact of structural genomics on the human a-helical transmembrane proteome. Nat Struct Mol Biol, 2013, 20: 135-138
[37]  8 Robertson J W F, Kasianowicz J J, Banerjee S. Analytical approaches for studying transporters, channels and porins. Chem Rev, 2012, 112: 6227-6249
[38]  9 Zhang X, Ren W, Decaen P, et al. Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature, 2012, 486: 130-134
[39]  10 Ma D, Lu P, Yan C, et al. Structure and mechanism of a glutamate-GABA antiporter. Nature, 2012, 483: 632-636
[40]  12 左利民, 康艳晶, 罗施中. a-螺旋跨膜蛋白的折叠和自组装. 科学通报, 2010, 55: 1426-1437
[41]  13 Doerr A. Membrane protein structures. Nat Methods, 2009, 6: 35
[42]  14 Oddershede L B. Force probing of individual molecules inside the living cell is now a reality. Nat Chem Biol, 2012, 8: 879-886
[43]  15 Phillips R, Ursell T, Wiggins P, et al. Emerging roles for lipids in shaping membrane-protein function. Nature, 2009, 459: 379-385
[44]  16 Coskun U, Simons K. Cell membranes: The lipid perspective. Structure, 2011, 19: 1543-1548
[45]  21 Walter N G, Huang C Y, Manzo A J, et al. Do-it-yourself guide: How to use the modern single-molecule toolkit. Nat Methods, 2008, 5: 475-489
[46]  22 Muller D J, Dufrene Y F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol, 2008, 3: 261-269
[47]  28 Hinterdorfer P, Dufrene Y F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods, 2006, 3: 347-355
[48]  33 Merkel R, Nassoy P, Leung A, et al. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature, 1999, 397: 50-53
[49]  34 Ebner A, Wildling L, Kamruzzahan A S M, et al. A new, simple method for linking of antibodies to atomic force microscopy tips. Bioconjugate Chem, 2007, 18: 1176-1184
[50]  35 Hinterdorfer P, Baumgartner W, Gruber H J, et al. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci USA, 1996, 93: 3477-3481
[51]  36 Shi X, Xu L, Yu J, et al. Study of inhibition effect of Herceptin on interaction between Heregulin and ErbB receptors HER3/HER2 by single-molecule force spectroscopy. Exp Cell Res, 2009, 315: 2847-2855
[52]  37 Florin E L, Moy V T, Gaub H E. Adhesion forces between individual ligand-receptor pairs. Science, 1994, 264: 415-417
[53]  38 Wang H, Obenauer-Kutner L, Lin M, et al. Imaging glycosylation. J Am Chem Soc, 2008, 130: 8154-8155
[54]  39 Allen S, Chen X, Davies J, et al. Detection of antigen-antibody binding events with the atomic force microscope. Biochemistry, 1997, 36: 7457-7463
[55]  40 Baumgartner W, Hinterdorfer P, Ness W, et al. Cadherin interaction probed by atomic force microscopy. Proc Natl Acad Sci USA, 2000, 97: 4005-4010
[56]  41 Zhang X, Bogorin D F, Moy V T. Molecular basis of the dynamic strength of the sialyl Lewis X-selectin interaction. Chem Phys Chem, 2004, 5: 175-182
[57]  42 Helenius J, Heisenberg C P, Gaub H E, et al. Single-cell force spectroscopy. J Cell Sci, 2008, 121: 1785-1791
[58]  43 Puntheeranurak T, Wildling L, Gruber H J, et al. Ligands on the string: single-molecule AFM studies on the interaction of antibodies and substrates with the Na+-glucose co-transporter SGLT1 in living cells. J Cell Sci, 2006, 119: 2960-2967
[59]  44 Yu J, Wang Q, Shi X, et al. Single-molecule force spectroscopy study of interaction between transforming growth factor b1 and its receptor in living cells. J Phys Chem B, 2007, 111: 13619-13625
[60]  45 Carvalho F A, Connell S, Miltenberger-Miltenyi G, et al. Atomic force microscopy-based molecular recognition of a fibrinogen receptor on human erythrocytes. ACS Nano, 2010, 4: 4609-4620
[61]  49 Yamada K M, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell, 2007, 130: 601-610
[62]  50 Li M, Xiao X, Liu L, et al. Atomic force microscopy study of the antigen-antibody binding force on patient cancer cells based on ROR1 fluorescence recognition. J Mol Recognit, 2013, 26: 432-438
[63]  51 Li M, Xiao X, Liu L, et al. Nanoscale mapping and organization analysis of target proteins on cancer cells from B-cell lymphoma patients. Exp Cell Res, 2013, 319: 2812-2821
[64]  52 Uhrmacher S, Schmidt C, Erdfelder F, et al. Use of the receptor tyrosine kinase-like orphan receptor 1 (ROR1) as a diagnostic tool in chronic lymphocytic leukemia(CLL). Leuk Res, 2011, 35: 1360-1366
[65]  53 Humburg M A, Collins F S. The path to personalized medicine. N Engl J Med, 2010, 363: 301-304
[66]  54 Sun M, Xu R M. Protein science research in China. Protein Cell, 2010, 1: 4-5
[67]  55 Zhou M, Robinson C V. When proteomics meets structural biology. Trends Biochem Sci, 2010, 35: 522-529
[68]  56 Kasas S, Dietler G. Probing nanomechanical properties from biomolecules to living cells. Pflugers Arch Eur J Physiol, 2008, 456: 13-27
[69]  58 Chiti F, Dobson C M. Protein misfolding, functional amyloid, and human disease. Ann Rev Biochem, 2006, 75: 333-366
[70]  59 Sapra K T, Damaghi M, Koster S, et al. One b hairpin after the other: Exploring mechanical unfolding pathways of the transmembrane b- barrel protein ompG. Angew Chem Int Ed, 2009, 48: 8306-8308
[71]  61 Rief M, Gautel M, Oesterhelt F, et al. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science, 1997, 276: 1109-1112
[72]  62 Muller D J, Kessler M, Oesterhelt F, et al. Stability of bacteriorhodopsin a-helices and loops analyzed by single-molecule force spectroscopy. Biophys J, 2002, 83: 3578-3588
[73]  67 Persson F, Barkefors I, Elf J. Single molecule methods with applications in living cells. Curr Opin Biotechnol, 2013, 24: 737-744
[74]  68 Fletcher D A, Mullins R D. Cell mechanics and the cytoskeleton. Nature, 2010, 463: 485-492
[75]  69 陈宜张. 活细胞单分子实时视见研究. 生命科学, 2003, 15: 79-82
[76]  70 李密, 刘连庆, 席宁, 等. 基于AFM的哺乳动物活细胞成像. 中国科学: 生命科学, 2013, 43: 770-777
[77]  71 李密, 刘连庆, 席宁, 等. AFM单细胞单分子形貌成像的研究进展. 科学通报, 2013, 58: 1711-1718
[78]  72 李密, 刘连庆, 席宁, 等. 基于AFM的红细胞及不同侵袭程度癌细胞的成像及机械特性测量. 中国科学: 生命科学, 2012, 42: 919- 925
[79]  73 李密, 刘连庆, 席宁, 等. 基于AFM单分子力谱技术的CD20-Rituximab间相互作用力测量. 科学通报, 2011, 56: 2681-2688
[80]  74 孙全梅, 冯建涛, 韩东. 纳米生物医学成像表征与医学功能生物界面. 科学通报, 2013, 58: 2449-2465
[81]  75 Plodinec M, Loparic M, Monnier C A, et al. The nanomechanical signature of breast cancer. Nat Nanotechnol, 2012, 7: 757-765
[82]  78 Alsteens D, Dupres V, Klotz S A, et al. Unfolding individual Als5p adhesion proteins on live cells. ACS Nano, 2009, 3: 1677-1682
[83]  79 Dufrene Y F, Evans E, Engel A, et al. Five challenges to bringing single-molecule force spectroscopy into living cells. Nat Methods, 2011, 8: 123-127
[84]  80 Han S W, Nakamura C, Kotobuki N, et al. High-efficiency DNA injection into a single human messenchymal stem cell using a nanoneedle and atomic force microscopy. Nanomedicine: NBM, 2008, 4: 215-225
[85]  81 Slattery A D, Quinton J S, Gibson C. Atomic force microscope cantilever calibration using a focused ion beam. Nanotechnology, 2012, 23: 285704
[86]  82 Evanko D. Updates for the AFM. Nat Methods, 2012, 9: 778-779
[87]  83 Churnside A B, Sullan R M A, Nguyen D M, et al. Routine and timely sub-piconewton force stability and precision for biological applications of atomic force microscopy. Nano Lett, 2012, 12: 3557-3561signature of breast cancer. Nat Nanotechnol, 2012, 7: 757-765
[88]  80 Han S W, Nakamura C, Kotobuki N, et al. High-efficiency DNA injection into a single human messenchymal stem cell using a nanoneedleand atomic force microscopy. Nanomedicine: NBM, 2008, 4: 215-225
[89]  81 Slattery A D, Quinton J S, Gibson C. Atomic force microscope cantilever calibration using a focused ion beam. Nanotechnology, 2012, 23:285704
[90]  82 Evanko D. Updates for the AFM. Nat Methods, 2012, 9: 778-779
[91]  83 Churnside A B, Sullan R M A, Nguyen D M, et al. Routine and timely sub-piconewton force stability and precision for biological applicationsof atomic force microscopy. Nano Lett, 2012, 12: 3557-3561

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133