2 The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489: 57-74
[2]
3 Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet, 2001, 2: 292-301
[3]
6 Li G, Ruan X, Auerbach R K, et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell, 2012, 148: 84-98
[4]
10 Zhao Z, Tavoosidana G, Sj?linder M, et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet, 2006, 38: 1341-1347
[5]
13 Kieffer-Kwon K R, Tang Z, Mathe E, et al. CTCF-mediated functional chromatin interactome in pluripotent cells. Nat Genet, 2011, 43: 630-638
17 Chepelev I, Wei G, Wangsa D, et al. Characterization of genome-wide enhancer-promoter interactions reveals co-expression of interacting genes and modes of higher order chromatin organization. Cell Res, 2012, 22: 490-503
[8]
19 Burton J N, Adey A, Patwardhan R P, et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol, 2013, 31: 1119-1125
[9]
23 Yaffe E, Tanay A. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat Genet, 2011, 43: 1059-1065
[10]
27 Kim Y G, Cha J, Chandrasegaran S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA, 1996, 93: 1156-1160
[11]
28 Boch J. TALEs of genome targeting. Nat Biotechnol, 2011, 29: 135-136
[12]
31 Fanucchi S, Shibayama Y, Burd S, et al. Chromosomal contact permits transcription between coregulated genes. Cell, 2013, 155: 606-620
[13]
33 Hu M, Deng K, Qin Z, et al. Bayesian inference of spatial organizations of chromosomes. PLoS Comput Biol, 2013, 9: e1002893
[14]
34 Zhang Z, Li G, Toh K C, et al. 3D chromosome modeling with semi-definite programming and Hi-C data. J Comput Biol, 2013, 20: 831-846
[15]
35 Sandhu K S, Li G, Sung W K, et al. Chromatin interaction networks and higher order architectures of eukaryotic genomes. J Cell Biochem, 2011, 112: 2218-2221
[16]
1 The Human Genome Project. What was the Human Genome Project? (http: //web. ornl. gov/sci/techresources/Human_Genome/project/ index. shtml). July 23,2013
[17]
4 Ruan Y. Genome-sequencing anniversary. Presenting the human genome: Now in 3D! Science, 2011, 331: 1025-1026
[18]
5 Fullwood M J, Liu M H, Pan Y F, et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 2009, 462: 58-64
[19]
7 Cremer T, Cremer M. Chromosome territories. Cold Spring Harbor Perspectives Biol, 2010, 2: a003889
[20]
8 Dekker J, Rippe K, Dekker M, et al. Capturing chromosome conformation. Science, 2002, 295: 1306-1311
[21]
9 Simonis M, Klous P, Splinter E, et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet, 2006, 38: 1348-1354
[22]
11 Dostie J, Richmond T A, Arnaout R A, et al. Chromosome Conformation Capture Carbon Copy (5C): A massively parallel solution for mapping interactions between genomic elements. Genome Res, 2006, 16: 1299-1309
[23]
12 Lieberman-Aiden E, van Berkum N L, Williams L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 2009, 326: 289-293
[24]
15 Kieffer-Kwon K R, Tang Z, Mathe E, et al. Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation. Cell, 2013, 155: 1507-1520
[25]
16 DeMare L E, Leng J, Cotney J, et al. The genomic landscape of cohesin-associated chromatin interactions. Genome Res, 2013, 23: 1224-1234
[26]
18 Zhang Y, McCord R P, Ho Y J, et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell, 2012, 148: 908-921
[27]
20 Selvaraj S R, Dixon J, Bansal V, et al. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nature Biotechnol, 2013, 31: 1111-1118
[28]
21 Nagano T, Lubling Y, Stevens T J, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 2013, 502: 59-64
[29]
22 Li G, Fullwood M J, Xu H, et al. ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol, 2010, 11: R22
[30]
24 Imakaev M, Fudenberg G, McCord R P, et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods, 2012, 9: 999-1003
[31]
25 Langer-Safer P R, Levine M, Ward D C. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci USA, 1982, 79: 4381-4385
[32]
26 Doksani Y, Wu J Y, de Lange T, et al. Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell, 2013, 155: 345-356
[33]
29 Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339: 819-823
[34]
30 Deng W, Lee J, Wang H, et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell, 2012, 149: 1233-1244
[35]
32 Ran F A, Hsu P D, Lin C Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 154: 1380-1389
[36]
36 Sandhu K S, Li G, Poh H M, et al. Large-scale functional organization of long-range chromatin interaction networks. Cell Rep, 2012, 2: 1207-1219