全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

含共轭四硫富瓦烯C∧N配体铱配合物的合成与性质

DOI: 10.1360/972013-912, PP. 1638-1646

Keywords: 四硫富瓦烯,吡啶配体,铱金属配合物,氧化还原性质

Full-Text   Cite this paper   Add to My Lib

Abstract:

四硫富瓦烯(TTF)及其衍生物具有强的给电子能力以及良好的氧化还原性质.本文将吡啶基团通过苯基与TTF骨架连接,成功合成了新型π共轭C∧N配体La和Lb,并利用X射线衍射谱确定了它们的单晶结构.进一步制备了基于这2个配体的新颖铱配合物[Ir(La)2(tpip)](1,tpip为四苯基二亚磷酸酰亚胺)和[Ir(Lb)2(tpip)](2).利用元素分析、红外光谱、核磁共振光谱、质谱等手段对所有化合物的结构进行了表征,并对其光化学和电化学性质进行了研究.

References

[1]  2 Wang J, Qian X, Cui J J. Detecting Hg2+ ions with an ICT fluorescent sensor molecule: Remarkable emission spectra shift and unique selectivity. J Org Chem, 2006, 71: 4308-4311
[2]  6 Baldo M A, Lamansky S, Burrows P E, et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl Phys Lett, 1999, 75: 4-6
[3]  7 Lamansky S, Djurovich P, Murphy D, et al. Synthesis and characterization of phosphorescent cyclometalated iridium complexes. Inorg Chem, 2001, 40: 1704-1711
[4]  8 Coppo P, Plummer E A, De Cola L. Tuning iridium(Ⅲ) phenylpyridine complexes in the "almost blue" region. Chem Commun, 2004, 1774-1775
[5]  9 Chen X W, Liao J J, Liang Y M, et al. High-efficiency red-light emission from polyfluorenes grafted with cyclometalated iridium complexes and charge transport moiety. J Am Chem Soc, 2003, 125: 636-637
[6]  10 Sandee A J, Williams C K, Evans N R, et al. Solution-processible conjugated electrophosphorescent polymers. J Am Chem Soc, 2004, 126: 7041-7048
[7]  12 Giner-Casares J J, Pérez-Morales M, Bolink H J, et al. Segregation of lipid in Ir-dye/DMPA mixed monolayers as strategy to fabricate 2D supramolecular nanostructures at the air-water interface. J Mater Chem, 2008, 18: 1681-1685
[8]  13 Welter S, Lafolet F, Cecchetto E, et al. Energy transfer by a hopping mechanism in dinuclear IrⅢ/RuⅡ complexes: A molecular wire? Chem Phys Chem, 2005, 6: 2417-2427
[9]  14 Xu W J, Liu S J, Zhao X Y, et al. Cationic iridium(Ⅲ) complex containing both triarylboron and carbazole moieties as a ratiometric fluoride probe that utilizes a switchable triplet-singlet emission. Chem Eur J, 2010, 16: 7125-7133
[10]  15 Shi H F, Liu S J, Sun H B, et al. Simple conjugated polymers with on-chain phosphorescent iridium(Ⅲ) complexes: Toward ratiometric chemodosimeters for detecting trace amounts of mercury(Ⅱ). Chem Eur J, 2010, 16: 12158-12167
[11]  16 Xu W J, Liu S J, Sun H B, et al. FRET-based probe for fluoride based on a phosphorescent iridium(Ⅲ) complex containing triarylboron groups. J Mater Chem, 2011, 21: 7572-7581
[12]  18 Costa R D, Ortí E, Bolink H J, et al. Archetype cationic iridium complexes and their use in solid-state light-emitting electrochemical cells. Adv Funct Mater, 2009, 19: 3456-3463
[13]  19 Nasr G, Guerlin A, Dumur F, et al. Dithiolate-appended iridium(Ⅲ) complex with dual functions of reducing and capping agent for the design of small-sized gold nanoparticles. J Am Chem Soc, 2011, 133: 6501-6504
[14]  21 Lamansky S, Djurovich P, Murphy D, et al. Highly phosphorescent bis-cyclometalated iridium complexes: Synthesis, photophysical characterization, and use in organic light emitting diodes. J Am Chem Soc, 2001, 123: 4304-4312
[15]  22 You Y M, Park S Y. Inter-ligand energy transfer and related emission change in the cyclometalated heteroleptic iridium complex: Facile and efficient color tuning over the whole visible range by the ancillary ligand structure. J Am Chem Soc, 2005, 127: 12438-12439
[16]  23 Guerrero M A, Vida Y, Domínguez G D, et al. Tuning emission properties of iridium and ruthenium metallosurfactants in micellar systems. Inorg Chem, 2008, 47: 9131-9133
[17]  26 Zhao Q, Yu M X, Shi L X, et al. Cationic iridium(Ⅲ) complexes with tunable emission color as phosphorescent dyes for live cell imaging. Organometallics, 2010, 29: 1085-1091
[18]  27 Xu C H, Sun W, Zhang C, et al. Luminescence switching of a cyclometalated iridium(Ⅲ) complex through a redox-active tetrathiafulvalene-based ligand. Chem Eur J, 2009, 15: 8717-8721
[19]  28 Smith K, Lindsay C M, Pritchard G J. Directed lithiation of arenethiols. J Am Chem Soc, 1989, 111: 665-669
[20]  29 Zhu Y C, Zhou L, Li Y H, et al. Highly efficient green and blue-green phosphorescent OLEDs based on iridium complexes with the tetraphenylimidodiphosphinate ligand. Adv Mater, 2011, 23: 4041-4046
[21]  44 Raymond A A, Ziessel R, Bura T, et al. Boron dipyrromethene (bodipy) phosphorescence revealed in[Ir(ppy)2(bpy-C≡C-Bodipy)]+. Inorg Chem, 2010, 49: 3730-3736
[22]  1 Chen Y, Li C H, Wang C F, et al. Synthesis, structure and physical properties of one-dimensional chain complex of tetrathiafulvalene carboxylate. Sci Chin, 2009, B52: 1596-1599
[23]  3 Benbellat N, Gavrilenko K S, Gal Y L, et al. Co(Ⅱ)-Co(Ⅱ) paddlewheel complex with a redox-active ligand derived from TTF. Inorg Chem, 2006, 45: 10440-10442
[24]  4 Liu S X, Ambrus C, Dolder S, et al. A dinuclear Ni(Ⅱ) complex with two types of intramolecular magnetic couplings: Ni(Ⅱ)-Ni(Ⅱ) and Ni(Ⅱ)-TTF. Inorg Chem, 2006, 45: 9622-9624
[25]  5 Jia C, Liu S X, Ambrus C, et al. One-dimensional μ-chloromanganese(Ⅱ)-tetrathiafulvalene (TTF) coordination compound. Inorg Chem, 2006, 45: 3152-3154
[26]  11 Du B, Wang L, Wu H, et al. High-efficiency electrophosphorescent copolymers containing charged iridium complexes in the side chains. Chem Eur J, 2007, 13: 7432-7442
[27]  17 Flamigni L, Barbieri A, Sabatini C, et al. Photochemistry and photophysics of coordination compounds: Iridium. Curr Chem, 2007, 281: 143-203
[28]  20 You Y, Lee S, Kim T, et al. Phosphorescent sensor for biological mobile zinc. J Am Chem Soc, 2011, 133: 18328-18342
[29]  24 Yu M X, Zhao Q, Shi L X, et al. Cationic iridium(Ⅲ) complexes for phosphorescence staining in the cytoplasm of living cells. Chem Commun, 2008, 2115-2117
[30]  25 Zhao Q, Liu S J, Shi M, et al. Tuning photophysical and electrochemical properties of cationic iridium(Ⅲ) complex salts with imidazolyl substituents by proton and anions. Organometallics, 2007, 26: 5922-5930
[31]  30 Chahma M, Wang X S, van der Est A, et al. Synthesis and characterization of a new family of spin bearing TTF ligands. J Org Chem, 2006, 71: 2750-2755
[32]  31 Qin J, Hu L, Li G N, et al. Syntheses, characterization, and properties of rhenium(Ⅰ) tricarbonyl complexes with tetrathiafulvalene-fused phenanthroline ligands. Organometallics, 2011, 30: 2173-2179
[33]  32 Fang C J, Zhu Z, Sun W, et al. New TTF derivatives: Several molecular logic gates based on their switchable fluorescent emissions. New J Chem, 2007, 31: 580-586
[34]  33 Bigot J, Charleux B, Cooke G, et al. Tetrathiafulvalene end-functionalized poly(N-isopropylacrylamide): A new class of amphiphilic polymer for the creation of multistimuli responsive micelles. J Am Chem Soc, 2010, 132: 10796-10801
[35]  34 Ashton P R, Balzani V, Becher J, et al. A three-pole supramolecular switch. J Am Chem Soc, 1999, 121: 3951-3957
[36]  35 Sun W, Xu C H, Zhu Z, et al. Chemical-driven reconfigurable arithmetic functionalities within a fluorescent tetrathiafulvalene derivative. Phys Chem C, 2008, 112: 16973-16978
[37]  36 Chen F F, Bian Z Q, Lou B, et al. Sensitised near-infrared emission from lanthanides using an iridium complex as a ligand in heteronuclear Ir2Ln arrays. Dalton Trans, 2008, 5577-5583
[38]  37 Mydlak M, Bizzarri C, Hartmann D, et al. Positively charged iridium(Ⅲ) triazole derivatives as blue emitters for light-emitting electrochemical cells. Adv Funct Mater, 2010, 20: 1812-1820
[39]  38 Baranoff E, Jung Ⅱ, Scopelliti R, et al. Room-temperature combinatorial screening of cyclometallated iridium(Ⅲ) complexes for a step towards molecular control of colour purity. Dalton Trans, 2011, 40: 6860-6867
[40]  39 Baranoff E, Orselli E, Allouche L, et al. A bright tetranuclear iridium(Ⅲ) complex. Chem Commun, 2011, 47: 2799-2801
[41]  40 Chahma M, Hassan N, Alberola A, et al. A three-pole supramolecular switch. Inorg Chem, 2007, 46: 3807-3809
[42]  41 Goze C, Leiggener C, Liu S X, et al. Fused donor-acceptor ligands in RuⅡ chemistry: Synthesis, electrochemistry and spectroscopy of[Ru(bpy)3-n(TTF-dppz)n](PF6)2+. Chem Phys Chem, 2007, 8: 1504-1512
[43]  42 Kim J Ⅱ, Shin I S, Kim H, et al. Efficient electrogenerated chemiluminescence from cyclometalated iridium(Ⅲ) complexes. J Am Chem Soc, 2005, 127: 1614-1615
[44]  43 Neve F, Deda M L, Crispini A, et al. Cationic cyclometalated iridium luminophores: Photophysical, redox, and structural characterization. Organometallics, 2004, 23: 5856-5863
[45]  45 Xue H, Tang X J, Wu L Z, et al. Highly selective colorimetric and electrochemical Pb2+ detection based on TTF-π-pyridine derivatives. J Org Chem, 2005, 70: 9727-9734

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133