2 Gunbas G, Toppare L. Electrochromic conjugated polyheterocycles and derivatives-highlights from the last decade towards realization of long lived aspirations. Chem Commun, 2012, 48: 1083-1101
[2]
7 Motiei L, Lahav M, Freeman D, et al. Electrochromic behavior of a self-propagating molecular-based assembly. J Am Chem Soc, 2009, 131: 3468-3469
[3]
8 Powell A P, Bielawski C W, Cowley A H. Design, synthesis, and study of main chain poly(N-heterocyclic carbene) complexes: Applications in electrochromic devices. J Am Chem Soc, 2010, 132: 10184-10195
[4]
11 Creutz C, Taube H. Direct approach to measuring the franck-condon barrier to electron transfer between metal ions. J Am Chem Soc, 1969, 91: 3988-3989
[5]
12 Creutz C, Taube H. Binuclear complexes of ruthenium ammines. J Am Chem Soc, 1973, 95: 1086-1094
[6]
16 Garcí?a C J, Meacham A P, Peter L M, et al. A near-infrared electrochromic window based on an Sb-doped SnO2 electrode modified with a Ru-dioxolene complex. Angew Chem Int Ed, 2003, 42: 3011-3014
[7]
18 Wadman S H, Lutz M, Tooke D M, et al. Consequences of N, C, N'-and C, N, N'-coordination modes on electronic and photophysical properties of cyclometalated aryl ruthenium(Ⅱ) complexes. Inorg Chem, 2009, 48: 1887-1900
[8]
19 Koivisto B D, Robson K C D, Berlinguette C P. Systematic manipulation of the light-harvesting properties for tridentate cyclometalated ruthenium(Ⅱ) complexes. Inorg Chem, 2009, 48: 9644-9652
[9]
20 Yang W W, Zhong Y W, Yoshikawa S, et al. Tuning of redox potentials by introducing a cyclometalated bond to bis-tridentate ruthenium(Ⅱ) complexes bearing bis(N-methylbenzimidazolyl)benzene or -pyridine ligands. Inorg Chem, 2012, 51: 890-899
[10]
23 Yang W W, Wang L, Zhong Y W, et al. Tridentate cyclometalated ruthenium(Ⅱ) complexes of click ligand 1, 3-di(1, 2, 3-triazol-4-yl)benzene. Organometallics, 2011, 30: 2236-2240
[11]
24 Yao C J, Zhong Y W, Yao J N. Charge delocalization in a cyclometalated bisruthenium complex bridged by a noninnocent 1, 2, 4, 5-tetra-(2-pyridyl)benzene ligand. J Am Chem Soc, 2011, 133: 15697-15706
[12]
28 Wu S H, Abru?a H D, Zhong Y W. Rhenium complexes of 2, 3-di(2-pyridyl)-5, 6-diphenylpyrazine: Synthesis, characterization, and reactivity. Organometallics, 2012, 31: 1161-1167
[13]
29 Sui L Z, Yang W W, Yao C J, et al. Charge delocalization of 1, 4-benzenedicyclometalated ruthenium: A comparison between tris-bidentate and bis-tridentate complex. Inorg Chem, 2012, 51: 1590-1598
[14]
30 Yao C J, Sui L Z, Xie H Y, et al. Electronic coupling between two cyclometalated ruthenium centers bridged by 1, 3, 6, 8-tetra(2-pyridyl)-pyrene (tppyr). Inorg Chem, 2010, 49: 8347-8350
[15]
31 Wang L, Yang W W, Zheng R H, et al. Electronic coupling between two cyclometalated ruthenium centers bridged by 1, 3, 6, 8-tetrakis(1-butyl-1H-1, 2, 3-triazol-4-yl)pyrene. Inorg Chem, 2011, 50: 7074-7079
[16]
32 Beley M, Collin J P, Louis R, et al. 3, 3', 5, 5'-Tetraphridylbiphenyl: A biscyclometalating bridging ligand with a high coupling ability in RuⅢ, RuⅡ mixed valence systems. J Am Chem Soc, 1991, 113: 8521-8522
[17]
36 Yang W W, Yao J N, Zhong Y W. Electronic coupling in a biscyclometalated ruthenium complex bridged by 3, 3', 5, 5'-tetrakis (1H-1, 2, 3-triazol-4-yl)biphenyl. Organometallics, 2012, 31: 1035-1041
[18]
40 Hush N S. Homogeneous and heterogeneous optical and thermal electron transfer. Electrochim Acta, 1968, 13: 1005-1023
[19]
44 Abru?a H D, Denisevich P, Uma?a M. Rectifying interfaces using two-layer films of electrochemically polymerized vinylpyridine and vinylbipyridine complexes of ruthenium and iron on electrodes. J Am Chem Soc, 1981, 103: 1-5
[20]
45 Denisevich P, Abru?a H D, Leidner C R, et al. Electropolymerization of vinylpyridine and vinylbipyridine complexes of iron and ruthenium: Homopolymers, copolymers, reactive polymers. Inorg Chem, 1982, 21: 2153-2161
[21]
46 Zhong Y W, Yao C J, Nie H J. Electropolymerized films of vinyl-substituted polypyridine complexes: Synthesis, characterization, and applications. Coord Chem Rev, 2013, 257: 1357-1372
[22]
48 Potts K T, Usifer D A, Guadalupe A R, et al. 4-Vinyl-, 6-vinyl-, and 4'-vinyl-2, 2':6', 2″-terpyridinyl ligands: Their synthesis and the electrochemistry of their transition-metal coordination complexes. J Am Chem Soc, 1987, 109: 3961-3967
[23]
49 Nie H J, Shao J Y, Wu J, et al. Synthesis and reductive electropolymerization of metal complexes with 5, 5'-divinyl-2, 2'-bipyridine. Organometallics, 2012, 31: 6952-6959
[24]
50 Cui B B, Nie H J, Yao C J, et al. Reductive electropolymerization of bis-tridentate ruthenium complexes with 5, 5″-divinyl-4'-tolyl-2, 2':6', 2″-terpyridine. Dalton Trans, 2003, 42: 14125-14133
[25]
51 Nie H J, Yao J N, Zhong Y W. Synthesis of vinyl-substituted polypyridinyl ligands through suzuki-miyauru cross-coupling of potassium vinyltrifluoroborate with bromopolypyridines. J Org Chem, 2011, 76: 4771-4775
[26]
52 Leasure R M, Ou W, Moss J A, et al. Spatial electrochromism in metallopolymeric films of ruthenium polypyridyl complexes. Chem Mater, 1996, 8: 264-273
[27]
53 Yao C J, Zhong Y W, Nie H J, et al. Near-IR electrochromism in electropolymerized films of a biscyclometalated ruthenium complex bridged by 1, 2, 4, 5-tetra(2-pyridyl) benzene. J Am Chem Soc, 2011, 133: 20720-20723
[28]
54 Yao C J, Yao J N, Zhong Y W. Metallopolymeric films based on a biscyclometalated ruthenium complex bridged by 1, 3, 6, 8-tetra(2-pyridyl) pyrene: Applications in near-infrared electrochromic windows. Inorg Chem, 2012, 51: 6259-6263
[29]
57 Hjelm J, Handel R W, Hagfeldt A, et al. Conducting polymers containing in-chain metal centers: Electropolymerization of oligothienyl-substituted {M(tpy)2} complexes and in situ conductivity studies, M=Os(Ⅱ), Ru(Ⅱ). Inorg Chem, 2005, 44: 1073-1081
[30]
58 Chen X Y, Yang X, Holliday B J, et al. Photoluminescent europium-containing inner sphere conducting metallopolymer. J Am Chem Soc, 2008, 130: 1546-1547
[31]
61 Chang C W, Liou G S. Novel anodic electrochromic aromatic polyamides with multi-stage oxidative coloring based on N, N, N', N'-tetraphenyl-p-phenylenediamine derivatives. J Mater Chem, 2008, 18: 5638-5646
[32]
62 Yen H J, Liou G S. Enhanced near-infrared electrochromism in triphenylamine-based aramids bearingphenothiazine redox centers. J Mater Chem, 2010, 20: 9886-9894
[33]
63 Yen H J, Lin K Y, Liou G S. Novel starburst triarylamine-containing electroactive aramids with highly stable electrochromism in near-infrared and visible light regions. Chem Mater, 2011, 23: 1874-1882
[34]
64 Qian G, Wang Z Y. Near-infrared organic compounds and emerging applications. Chem Asian J, 2010, 5: 1006-1029
[35]
1 Beaujuge P M, Reynolds J R. Color control in p-conjugated organic polymers for use in electrochromic devices. Chem Rev, 2010, 110: 268-320
[36]
3 Qi Y H, Desjardins P, Meng X S, et al. Electrochromic ruthenium complex materials for optical attenuation. Opt Mater, 2002, 21: 255-263
[37]
4 Bernhard S, Goldsmith J I, Takada K, et al. Iron(Ⅱ) and copper(Ⅰ) coordination polymers: Electrochromic materials with and without chiroptical properties. Inorg Chem, 2003, 42: 4389-4393
[38]
5 Han F S, Higuchi M, Kurth D G. Metallo-supramolecular polymers based on functionalized bis-terpyridines as novel electrochromic materials. Adv Mater, 2007, 19: 3928-3931
[39]
6 Han F S, Higuchi M, Kurth D G. Metallo-supramolecular polyelectrolytes self-assembled from various pyridine ring-substituted bisterpyridines and metal ions: Photophysical, electrochemical, and electrochromic properties. J Am Chem Soc, 2008, 130: 2073-2081
[40]
9 Aguirre E P, O'Hare D. Electronic communication through unsaturated hydrocarbon bridges in homobimetallic organometallic complexes. Chem Rev, 2010, 110: 4839-4864
[41]
10 Heckmann S, Lambert C. Organic mixed-valence compounds: A playground for electrons and holes. Angew Chem Int Ed, 2012, 51: 326-392
[42]
13 Dattelbaum D M, Hartshorn C M, Meyer T J. Direct measurement of excited-state intervalence transfer in[(tpy)RuⅢ(tppz*-)RuⅡ(tpy)]4+ by time-resolved near-infrared spectroscopy. J Am Chem Soc, 2002, 124: 4938-4939
[43]
14 Qi Y H, Desjardins P, Wang Z Y. Novel near-infrared active dinuclear ruthenium complex materials: Effects of substituents on optical attenuation. J Opt A Pure Appl Opt, 2002, 4: S273-S277
[44]
15 Wang S, Li X, Xun S, et al. Near-infrared electrochromic and electroluminescent polymers containing pendant ruthenium complex groups. Macromolecules, 2006, 39: 7502-7507
[45]
17 Ward M D. Near-infrared electrochromic materials for optical attenuation based on transition-metal coordination complexes. J Solid State Electrochem, 2005, 9: 778-787
[46]
21 Yang W W, Zhong Y W. Cyclometalated ruthenium complexes of 1, 2, 3-triazole-containing ligands: Synthesis, structural studies, and electronic properties. Chin J Chem, 2013, 31: 329-338
[47]
22 Zhang Y M, Shao J Y, Yao C J, et al. Cyclometalated ruthenium(Ⅱ) complexes with a bis-carbene CCC-pincer ligand. Dalton Trans, 2012, 41: 9280-9282
[48]
25 Zhong Y W, Wu S H, Burkhardt S E, et al. Mononuclear and dinuclear ruthenium complexes of 2, 3-di-2-pyridyl-5, 6-diphenylpyrazine: Synthesis and spectroscopic and electrochemical studies. Inorg Chem, 2011, 50: 517-524
[49]
26 Wu S H, Burkhardt S E, Zhong Y W, et al. Cyclometalated ruthenium oligomers with 2, 3-di(2-pyridyl)-5, 6-diphenylpyrazine: A combined experimental, computational, and comparison study with noncyclometalated analogous. Inorg Chem, 2012, 51: 13312-13320
[50]
27 Wu S H, Burkhardt S E, Yao J N, et al. Near-infrared absorbing and emitting RuⅡ-PtⅡ heterodimetallic complexes of dpdpz (dpdpz= 2, 3-di(2-pyridyl)-5, 6-diphenylpyrazine). Inorg Chem, 2011, 50: 3959-3969
[51]
33 Sutter J P, Grove D M, Beley M, et al. Copper(Ⅱ)-mediated oxidative coupling of bis(dimethylaminomethyl) arylruthenium complexes to give[(terpy)RuⅢ(pincer-pincer)-RuⅢ(terpy)](CuCl2)4. Angew Chem Int Ed, 1994, 33: 1282-1285
[52]
34 Patoux C, Launay J P, Beley M, et al. Long-range electronic coupling in bis(cyclometalated) ruthenium complexes. J Am Chem Soc, 1998, 120: 3717-3725
[53]
35 Shao J Y, Yang W W, Yao J N, et al. Biscyclometalated ruthenium complexes bridged by 3, 3', 5, 5'-tetrakis(N-methylbenzimidazol-2-yl) biphenyl: Synthesis and spectroscopic and electronic coupling studies. Inorg Chem, 2012, 51: 4343-4351
[54]
37 Wang L, Yang W W, Zhong Y W, et al. Enhancing the electronic coupling in a cyclometalated bisruthenium complex by using the 1, 3, 6, 8-tetra(pyridine-2-yl) carbazole bridge. Dalton Trans, 2013, 42: 5611-5614
[55]
38 Robin M B, Day P. Mixed-valence chemistry: A survey and classification. Adv Inorg Chem Radiochem, 1967, 10: 247-422
[56]
39 Hush N S. Intervalence-transfer absorption, Part 2. Theoretical considerations and spectroscopic data. Prog Inorg Chem, 1967, 8: 391-444
[57]
41 Maier A, Rabindranath A R, Tieke B. Fast-switching electrochromic films of Zinc polyiminofluorene-terpyridine prepared upon coordinative supramolecular assembly. Adv Mater, 2009, 21: 959-963
[58]
42 Tieke B. Coordinative supramolecular assembly of electrochromic thin films. Curr Opin Coll Interf Sci, 2011, 16: 499-507
[59]
43 Friebe C, Hager M D, Winter A, et al. Metal-containing polymers via electropolymerization. Adv Mater, 2012, 24: 332-345
[60]
47 Gould S, O'Toole T R, Meyer T J. Photochemical ligand loss as a basis for imaging and microstructure formation in a thin polymeric film. J Am Chem Soc, 1990, 112: 9490-9496
[61]
55 Deronzier A, Moutet J C. Polypyrrole films containing metal complexes: Syntheses and applications. Coord Chem Rev, 1996, 147: 339-371
[62]
56 Wolf M O. Transition-metal-polythiophene hybrid materials. Adv Mater, 2001, 13: 545-553
[63]
59 Leung M, Chou M Y, Su Y O, et al. Diphenylamino group as an effective handle to conjugated donor-acceptor polymers through electropolymerization. Org Lett, 2003, 5: 839-842
[64]
60 Yao C J, Zhong Y W, Yao J N. Five-stage near-infrared electrochromism in electropolymerized films composed of alternating cyclometalated bisruthenium and bis-triarylamine segments. Inorg Chem, 2013, 52: 10000-10008
[65]
65 Kaim W. Concepts for metal complex chromophores absorbing in the near infrared. Coord Chem Rev, 2011, 255: 2503-2513
[66]
66 Lin W, Zheng Y, Zhang J, et al. Fabrication of core-shell nanostructures from near-infrared electrochromic amphiphilic diblock copolymers containing pendant dinuclear ruthenium group through assembly and their optical, electrochemical, and electroptical properties. Macromolecules, 2011, 44: 5146-5154
[67]
67 Chen F, Zhang J, Jiang H, et al. Colorless to purple-red switching electrochromic anthraquinone imides with broad visible/near-IR absorptions in the radical anion state: Simulation-aided molecular design. Chem Asian J, 2013, 8: 1497-1503