全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

基于混合价双钌配合物的近红外电致变色

DOI: 10.1360/972013-918, PP. 1591-1602

Keywords: 金属钌配合物,电化学聚合,近红外,电致变色,混合价化合物

Full-Text   Cite this paper   Add to My Lib

Abstract:

介绍了电致变色器件的应用前景和基本评价参数,以及近红外电致变色材料的基本要求和研究现状.结合本课题组的近期工作进展,着重介绍了环金属双钌配合物的设计、合成、电化学以及光谱性质,并讨论了这些配合物在混合价态的金属-金属电子相互作用情况.Ru-C金属键的存在大大降低了金属的氧化还原电位,并显著增强了金属-金属电子相互作用.当配合物处于混合价状态时,在近红外区域显示强价间电荷转移吸收,并且最大吸收波长和摩尔消光系数可以通过桥联配体和端基配体进行调节.通过电化学还原或氧化聚合,在电极表面得到这些配合物的高聚物薄膜.这些薄膜显示多态近红外电致变色现象,并具有操作电压低、响应时间较短、对比率良好、记忆时间长等优点.

References

[1]  2 Gunbas G, Toppare L. Electrochromic conjugated polyheterocycles and derivatives-highlights from the last decade towards realization of long lived aspirations. Chem Commun, 2012, 48: 1083-1101
[2]  7 Motiei L, Lahav M, Freeman D, et al. Electrochromic behavior of a self-propagating molecular-based assembly. J Am Chem Soc, 2009, 131: 3468-3469
[3]  8 Powell A P, Bielawski C W, Cowley A H. Design, synthesis, and study of main chain poly(N-heterocyclic carbene) complexes: Applications in electrochromic devices. J Am Chem Soc, 2010, 132: 10184-10195
[4]  11 Creutz C, Taube H. Direct approach to measuring the franck-condon barrier to electron transfer between metal ions. J Am Chem Soc, 1969, 91: 3988-3989
[5]  12 Creutz C, Taube H. Binuclear complexes of ruthenium ammines. J Am Chem Soc, 1973, 95: 1086-1094
[6]  16 Garcí?a C J, Meacham A P, Peter L M, et al. A near-infrared electrochromic window based on an Sb-doped SnO2 electrode modified with a Ru-dioxolene complex. Angew Chem Int Ed, 2003, 42: 3011-3014
[7]  18 Wadman S H, Lutz M, Tooke D M, et al. Consequences of N, C, N'-and C, N, N'-coordination modes on electronic and photophysical properties of cyclometalated aryl ruthenium(Ⅱ) complexes. Inorg Chem, 2009, 48: 1887-1900
[8]  19 Koivisto B D, Robson K C D, Berlinguette C P. Systematic manipulation of the light-harvesting properties for tridentate cyclometalated ruthenium(Ⅱ) complexes. Inorg Chem, 2009, 48: 9644-9652
[9]  20 Yang W W, Zhong Y W, Yoshikawa S, et al. Tuning of redox potentials by introducing a cyclometalated bond to bis-tridentate ruthenium(Ⅱ) complexes bearing bis(N-methylbenzimidazolyl)benzene or -pyridine ligands. Inorg Chem, 2012, 51: 890-899
[10]  23 Yang W W, Wang L, Zhong Y W, et al. Tridentate cyclometalated ruthenium(Ⅱ) complexes of click ligand 1, 3-di(1, 2, 3-triazol-4-yl)benzene. Organometallics, 2011, 30: 2236-2240
[11]  24 Yao C J, Zhong Y W, Yao J N. Charge delocalization in a cyclometalated bisruthenium complex bridged by a noninnocent 1, 2, 4, 5-tetra-(2-pyridyl)benzene ligand. J Am Chem Soc, 2011, 133: 15697-15706
[12]  28 Wu S H, Abru?a H D, Zhong Y W. Rhenium complexes of 2, 3-di(2-pyridyl)-5, 6-diphenylpyrazine: Synthesis, characterization, and reactivity. Organometallics, 2012, 31: 1161-1167
[13]  29 Sui L Z, Yang W W, Yao C J, et al. Charge delocalization of 1, 4-benzenedicyclometalated ruthenium: A comparison between tris-bidentate and bis-tridentate complex. Inorg Chem, 2012, 51: 1590-1598
[14]  30 Yao C J, Sui L Z, Xie H Y, et al. Electronic coupling between two cyclometalated ruthenium centers bridged by 1, 3, 6, 8-tetra(2-pyridyl)-pyrene (tppyr). Inorg Chem, 2010, 49: 8347-8350
[15]  31 Wang L, Yang W W, Zheng R H, et al. Electronic coupling between two cyclometalated ruthenium centers bridged by 1, 3, 6, 8-tetrakis(1-butyl-1H-1, 2, 3-triazol-4-yl)pyrene. Inorg Chem, 2011, 50: 7074-7079
[16]  32 Beley M, Collin J P, Louis R, et al. 3, 3', 5, 5'-Tetraphridylbiphenyl: A biscyclometalating bridging ligand with a high coupling ability in RuⅢ, RuⅡ mixed valence systems. J Am Chem Soc, 1991, 113: 8521-8522
[17]  36 Yang W W, Yao J N, Zhong Y W. Electronic coupling in a biscyclometalated ruthenium complex bridged by 3, 3', 5, 5'-tetrakis (1H-1, 2, 3-triazol-4-yl)biphenyl. Organometallics, 2012, 31: 1035-1041
[18]  40 Hush N S. Homogeneous and heterogeneous optical and thermal electron transfer. Electrochim Acta, 1968, 13: 1005-1023
[19]  44 Abru?a H D, Denisevich P, Uma?a M. Rectifying interfaces using two-layer films of electrochemically polymerized vinylpyridine and vinylbipyridine complexes of ruthenium and iron on electrodes. J Am Chem Soc, 1981, 103: 1-5
[20]  45 Denisevich P, Abru?a H D, Leidner C R, et al. Electropolymerization of vinylpyridine and vinylbipyridine complexes of iron and ruthenium: Homopolymers, copolymers, reactive polymers. Inorg Chem, 1982, 21: 2153-2161
[21]  46 Zhong Y W, Yao C J, Nie H J. Electropolymerized films of vinyl-substituted polypyridine complexes: Synthesis, characterization, and applications. Coord Chem Rev, 2013, 257: 1357-1372
[22]  48 Potts K T, Usifer D A, Guadalupe A R, et al. 4-Vinyl-, 6-vinyl-, and 4'-vinyl-2, 2':6', 2″-terpyridinyl ligands: Their synthesis and the electrochemistry of their transition-metal coordination complexes. J Am Chem Soc, 1987, 109: 3961-3967
[23]  49 Nie H J, Shao J Y, Wu J, et al. Synthesis and reductive electropolymerization of metal complexes with 5, 5'-divinyl-2, 2'-bipyridine. Organometallics, 2012, 31: 6952-6959
[24]  50 Cui B B, Nie H J, Yao C J, et al. Reductive electropolymerization of bis-tridentate ruthenium complexes with 5, 5″-divinyl-4'-tolyl-2, 2':6', 2″-terpyridine. Dalton Trans, 2003, 42: 14125-14133
[25]  51 Nie H J, Yao J N, Zhong Y W. Synthesis of vinyl-substituted polypyridinyl ligands through suzuki-miyauru cross-coupling of potassium vinyltrifluoroborate with bromopolypyridines. J Org Chem, 2011, 76: 4771-4775
[26]  52 Leasure R M, Ou W, Moss J A, et al. Spatial electrochromism in metallopolymeric films of ruthenium polypyridyl complexes. Chem Mater, 1996, 8: 264-273
[27]  53 Yao C J, Zhong Y W, Nie H J, et al. Near-IR electrochromism in electropolymerized films of a biscyclometalated ruthenium complex bridged by 1, 2, 4, 5-tetra(2-pyridyl) benzene. J Am Chem Soc, 2011, 133: 20720-20723
[28]  54 Yao C J, Yao J N, Zhong Y W. Metallopolymeric films based on a biscyclometalated ruthenium complex bridged by 1, 3, 6, 8-tetra(2-pyridyl) pyrene: Applications in near-infrared electrochromic windows. Inorg Chem, 2012, 51: 6259-6263
[29]  57 Hjelm J, Handel R W, Hagfeldt A, et al. Conducting polymers containing in-chain metal centers: Electropolymerization of oligothienyl-substituted {M(tpy)2} complexes and in situ conductivity studies, M=Os(Ⅱ), Ru(Ⅱ). Inorg Chem, 2005, 44: 1073-1081
[30]  58 Chen X Y, Yang X, Holliday B J, et al. Photoluminescent europium-containing inner sphere conducting metallopolymer. J Am Chem Soc, 2008, 130: 1546-1547
[31]  61 Chang C W, Liou G S. Novel anodic electrochromic aromatic polyamides with multi-stage oxidative coloring based on N, N, N', N'-tetraphenyl-p-phenylenediamine derivatives. J Mater Chem, 2008, 18: 5638-5646
[32]  62 Yen H J, Liou G S. Enhanced near-infrared electrochromism in triphenylamine-based aramids bearingphenothiazine redox centers. J Mater Chem, 2010, 20: 9886-9894
[33]  63 Yen H J, Lin K Y, Liou G S. Novel starburst triarylamine-containing electroactive aramids with highly stable electrochromism in near-infrared and visible light regions. Chem Mater, 2011, 23: 1874-1882
[34]  64 Qian G, Wang Z Y. Near-infrared organic compounds and emerging applications. Chem Asian J, 2010, 5: 1006-1029
[35]  1 Beaujuge P M, Reynolds J R. Color control in p-conjugated organic polymers for use in electrochromic devices. Chem Rev, 2010, 110: 268-320
[36]  3 Qi Y H, Desjardins P, Meng X S, et al. Electrochromic ruthenium complex materials for optical attenuation. Opt Mater, 2002, 21: 255-263
[37]  4 Bernhard S, Goldsmith J I, Takada K, et al. Iron(Ⅱ) and copper(Ⅰ) coordination polymers: Electrochromic materials with and without chiroptical properties. Inorg Chem, 2003, 42: 4389-4393
[38]  5 Han F S, Higuchi M, Kurth D G. Metallo-supramolecular polymers based on functionalized bis-terpyridines as novel electrochromic materials. Adv Mater, 2007, 19: 3928-3931
[39]  6 Han F S, Higuchi M, Kurth D G. Metallo-supramolecular polyelectrolytes self-assembled from various pyridine ring-substituted bisterpyridines and metal ions: Photophysical, electrochemical, and electrochromic properties. J Am Chem Soc, 2008, 130: 2073-2081
[40]  9 Aguirre E P, O'Hare D. Electronic communication through unsaturated hydrocarbon bridges in homobimetallic organometallic complexes. Chem Rev, 2010, 110: 4839-4864
[41]  10 Heckmann S, Lambert C. Organic mixed-valence compounds: A playground for electrons and holes. Angew Chem Int Ed, 2012, 51: 326-392
[42]  13 Dattelbaum D M, Hartshorn C M, Meyer T J. Direct measurement of excited-state intervalence transfer in[(tpy)RuⅢ(tppz*-)RuⅡ(tpy)]4+ by time-resolved near-infrared spectroscopy. J Am Chem Soc, 2002, 124: 4938-4939
[43]  14 Qi Y H, Desjardins P, Wang Z Y. Novel near-infrared active dinuclear ruthenium complex materials: Effects of substituents on optical attenuation. J Opt A Pure Appl Opt, 2002, 4: S273-S277
[44]  15 Wang S, Li X, Xun S, et al. Near-infrared electrochromic and electroluminescent polymers containing pendant ruthenium complex groups. Macromolecules, 2006, 39: 7502-7507
[45]  17 Ward M D. Near-infrared electrochromic materials for optical attenuation based on transition-metal coordination complexes. J Solid State Electrochem, 2005, 9: 778-787
[46]  21 Yang W W, Zhong Y W. Cyclometalated ruthenium complexes of 1, 2, 3-triazole-containing ligands: Synthesis, structural studies, and electronic properties. Chin J Chem, 2013, 31: 329-338
[47]  22 Zhang Y M, Shao J Y, Yao C J, et al. Cyclometalated ruthenium(Ⅱ) complexes with a bis-carbene CCC-pincer ligand. Dalton Trans, 2012, 41: 9280-9282
[48]  25 Zhong Y W, Wu S H, Burkhardt S E, et al. Mononuclear and dinuclear ruthenium complexes of 2, 3-di-2-pyridyl-5, 6-diphenylpyrazine: Synthesis and spectroscopic and electrochemical studies. Inorg Chem, 2011, 50: 517-524
[49]  26 Wu S H, Burkhardt S E, Zhong Y W, et al. Cyclometalated ruthenium oligomers with 2, 3-di(2-pyridyl)-5, 6-diphenylpyrazine: A combined experimental, computational, and comparison study with noncyclometalated analogous. Inorg Chem, 2012, 51: 13312-13320
[50]  27 Wu S H, Burkhardt S E, Yao J N, et al. Near-infrared absorbing and emitting RuⅡ-PtⅡ heterodimetallic complexes of dpdpz (dpdpz= 2, 3-di(2-pyridyl)-5, 6-diphenylpyrazine). Inorg Chem, 2011, 50: 3959-3969
[51]  33 Sutter J P, Grove D M, Beley M, et al. Copper(Ⅱ)-mediated oxidative coupling of bis(dimethylaminomethyl) arylruthenium complexes to give[(terpy)RuⅢ(pincer-pincer)-RuⅢ(terpy)](CuCl2)4. Angew Chem Int Ed, 1994, 33: 1282-1285
[52]  34 Patoux C, Launay J P, Beley M, et al. Long-range electronic coupling in bis(cyclometalated) ruthenium complexes. J Am Chem Soc, 1998, 120: 3717-3725
[53]  35 Shao J Y, Yang W W, Yao J N, et al. Biscyclometalated ruthenium complexes bridged by 3, 3', 5, 5'-tetrakis(N-methylbenzimidazol-2-yl) biphenyl: Synthesis and spectroscopic and electronic coupling studies. Inorg Chem, 2012, 51: 4343-4351
[54]  37 Wang L, Yang W W, Zhong Y W, et al. Enhancing the electronic coupling in a cyclometalated bisruthenium complex by using the 1, 3, 6, 8-tetra(pyridine-2-yl) carbazole bridge. Dalton Trans, 2013, 42: 5611-5614
[55]  38 Robin M B, Day P. Mixed-valence chemistry: A survey and classification. Adv Inorg Chem Radiochem, 1967, 10: 247-422
[56]  39 Hush N S. Intervalence-transfer absorption, Part 2. Theoretical considerations and spectroscopic data. Prog Inorg Chem, 1967, 8: 391-444
[57]  41 Maier A, Rabindranath A R, Tieke B. Fast-switching electrochromic films of Zinc polyiminofluorene-terpyridine prepared upon coordinative supramolecular assembly. Adv Mater, 2009, 21: 959-963
[58]  42 Tieke B. Coordinative supramolecular assembly of electrochromic thin films. Curr Opin Coll Interf Sci, 2011, 16: 499-507
[59]  43 Friebe C, Hager M D, Winter A, et al. Metal-containing polymers via electropolymerization. Adv Mater, 2012, 24: 332-345
[60]  47 Gould S, O'Toole T R, Meyer T J. Photochemical ligand loss as a basis for imaging and microstructure formation in a thin polymeric film. J Am Chem Soc, 1990, 112: 9490-9496
[61]  55 Deronzier A, Moutet J C. Polypyrrole films containing metal complexes: Syntheses and applications. Coord Chem Rev, 1996, 147: 339-371
[62]  56 Wolf M O. Transition-metal-polythiophene hybrid materials. Adv Mater, 2001, 13: 545-553
[63]  59 Leung M, Chou M Y, Su Y O, et al. Diphenylamino group as an effective handle to conjugated donor-acceptor polymers through electropolymerization. Org Lett, 2003, 5: 839-842
[64]  60 Yao C J, Zhong Y W, Yao J N. Five-stage near-infrared electrochromism in electropolymerized films composed of alternating cyclometalated bisruthenium and bis-triarylamine segments. Inorg Chem, 2013, 52: 10000-10008
[65]  65 Kaim W. Concepts for metal complex chromophores absorbing in the near infrared. Coord Chem Rev, 2011, 255: 2503-2513
[66]  66 Lin W, Zheng Y, Zhang J, et al. Fabrication of core-shell nanostructures from near-infrared electrochromic amphiphilic diblock copolymers containing pendant dinuclear ruthenium group through assembly and their optical, electrochemical, and electroptical properties. Macromolecules, 2011, 44: 5146-5154
[67]  67 Chen F, Zhang J, Jiang H, et al. Colorless to purple-red switching electrochromic anthraquinone imides with broad visible/near-IR absorptions in the radical anion state: Simulation-aided molecular design. Chem Asian J, 2013, 8: 1497-1503

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133