全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

聚3,4-乙撑二氧噻吩(PEDOT)在锂氧电池中的电催化性能

DOI: 10.1360/N972013-00044, PP. 2119-2124

Keywords: PEDOT,乙炔黑,锂氧电池,阴极,电催化性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用化学聚合法合成了PEDOT粉体.将PEDOT/乙炔黑/PTFE和乙炔黑/PTFE分别按质量比4.5/4.5/1和9/1进行混合,调浆后均匀涂覆在镍网上,作为锂氧电池空气电极.用FTIR对复合物的结构进行分析.用四探针法、循环伏安法、恒流充放电法和电化学阻抗法研究了乙炔黑和PEDOT/乙炔黑两种材料的导电性及电化学性能.测试结果表明,乙炔黑/PTFE(9/1)和PEDOT/乙炔黑/PTFE(4.5/4.5/1)的还原电位分别为2.20和2.57V;乙炔黑/PTFE(9/1)的首次放电比容量为2812mAh/g,而PEDOT/乙炔黑/PTFE(4.5/4.5/1)的比容量则达到了4056mAh/g;添加PEDOT使乙炔黑模拟电池的电荷转移阻抗降低了~76.8%,表明PEDOT能够使锂离子在脱/嵌过程中的极化变小.以上结果说明PEDOT能够有效提高乙炔黑的电催化性能.

References

[1]  1 Abraham K M, Jiang Z. A polymer electrolyte—Based rechargeable lithium/oxygen battery. J Electrochem Soc, 1996, 143: 1-5
[2]  2 Bruce P G. Energy storage beyond the horizon: Rechargeable lithium batteries. Solid State Ionics, 2008, 179: 752-760
[3]  5 Debart A, Bao J L, Armstrong G, et al. An O2 cathode for rechargeable Lithium batteries: The effect of a catalyst. J Power Sources, 2007, 174: 1177-1182
[4]  6 Debart A, Paterson A J, Bao J L, et al. Alpha-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angewandte Chemie-Int Ed, 2008, 47: 4521-4524
[5]  9 Nasybulin E, Xu W, Engelhard M H, et al. Electrocatalytic properties of poly (3,4-ethylenedioxythiophene)(PEDOT) in Li-O2 battery. Electrochem Commun, 2013, 29: 63-66
[6]  10 Taggart D K, Yang Y, Kung S C, et al. Enhanced thermoelectric metrics in ultra-long electrodeposited PEDOT nanowires. Nano Lett, 2010, 11: 125-131
[7]  11 Zhao Q, Sun Y, Wang G, et al. Facile synthesis of high-aspect-ratio PEDOT tube arrays with ultra hydrophilic properties. Synth Metals, 2013, 163: 42-46
[8]  3 Kuboki T, Okuyama T, Ohsaki T, et al. Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J Power Sources, 2005, 146: 766-769
[9]  4 Minowa H, Hayashi M, Takahashi M, et al. Electrochemical properties of carbon materials and La0.6Sr0.4Mn0.4O3 electrocatalysts for air electrodes of lithium-air secondary batteries. Electrochemistry, 2010, 78: 353-356
[10]  7 陶益杰, 郑文伟, 程海峰, 等. 电致变色导电聚合物PEDOT的研究进展. 材料导报, 2010, 24: 113-117
[11]  8 Winther-Jensen B, Winther-Jensen O, Forsyth M, et al. High rates of oxygen reduction over a vapor phase-polymerized PEDOT electrode. Science, 2008, 321: 671-674
[12]  12 Freunberger S A, Chen Y, Drewett N E, et al. The lithium-oxygen battery with ether—Based electrolytes. Angewandte Chemie Int Ed, 2011, 50: 8609-8613
[13]  13 Veith G M, Nanda J, Delmau L H, et al. Influence of lithium salts on the discharge chemistry of Li-air cells. J Phys Chem Lett, 2012, 3: 1242-1247
[14]  14 McCloskey B D, Speidel A, Scheffler R, et al. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries. J Phys Chem Lett, 2012, 3: 997-1001
[15]  15 Laoire C O, Mukerjee S, Abraham K M, et al. Elucidating the mechanism of oxygen reduction for lithium-air battery applications. J Phys Chem C, 2009, 113: 20127-20134
[16]  16 Peng Z, Freunberger S A, Hardwick L J, et al. Oxygen reactions in a non-aqueous Li+ electrolyte. Angewandte Chem, 2011, 123: 6475-6479

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133