全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

基于ICESat/GLAS,SRTMDEM和GPS观测青藏高原纳木那尼冰面高程变化(2000~2010年)

DOI: 10.1360/972013-1243, PP. 2108-2118

Keywords: 青藏高原,纳木那尼,冰面高程变化,ICESat,SRTM,差分GPS

Full-Text   Cite this paper   Add to My Lib

Abstract:

气候变化所导致的冰川加速消融及冰川冰储量的减少将显著影响区域水资源和水循环,而冰川厚度的变化是反映这一过程的关键指标.利用ICESat/GLAS数据与SRTMDEM数据,并结合冰面差分GPS实测数据,通过监测喜马拉雅山脉西段纳木那尼冰川的冰面高程变化,来估算其冰川厚度变化.在方法上,首先利用非冰川区的ICESat高程数据对SRTMDEM高程精度进行评价,然后选择控制点对SRTMDEM进行配准并再次评价,SRTMDEM水平位置偏移为138m,配准后的SRTMDEM与ICESat高程差平均值为-0.1m,标准差为11m,最后利用校准后的SRTMDEM与ICESat/GLAS,计算2000~2009年纳木那尼冰面高程的变化.研究结果表明,纳木那尼冰川在2000~2009年间的平均减薄速率为0.63±0.32m/a,这与利用差分GPS测得的2008~2010年间冰川平均减薄速率0.65±0.25m/a接近.研究结果也发现纳木那尼冰川的减薄速率整体上随着海拔的升高而逐渐减小.普兰县气象资料分析表明纳木那尼冰面的快速消融主要是由当地气温升高所致.

References

[1]  1 IPCC. Climate Change 2001: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2001. 183-398
[2]  6 Fujita K, Nuimura T. Spatially heterogeneous wastage of Himalayan glaciers. Proc Natl Acad Sci USA, 2011, 108: 14011-14014
[3]  7 Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change, 2012, 2: 663-667
[4]  8 马凌龙, 田立德, 蒲健辰, 等. 喜马拉雅山中段抗物热冰川的面积和冰储量变化. 科学通报, 2010, 55: 1766-1774
[5]  11 Nuimura T, Fujita K, Yamaguchi S, et al. Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992-2008. J Glaciol, 2012, 58: 648-656
[6]  12 Yan S Y, Guo H D, Liu G, et al. Mountain glacier displacement estimation using a DEM-assisted offset tracking method with ALOS/PALSAR data. Remote Sens Lett, 2013, 4: 494-503
[7]  13 Braun A, Fotopoulos G. Assessment of SRTM, ICESat, and survey control monument elevations in Canada. Photogramm Eng Rem S, 2007, 73: 1333-1342
[8]  14 Racoviteanu A E, Manley W F, Arnaud Y, et al. Evaluating digital elevation models for glaciologic applications: An example from Nevado Coropuna, Peruvian Andes. Glob Planet Change, 2007, 59: 110-125
[9]  15 Peduzzi P, Herold C, Silverio W. Assessing high altitude glacier thickness, volume and area changes using field, GIS and remote sensing techniques: the case of Nevado Coropuna (Peru). Cryosphere, 2010, 4: 313-323
[10]  21 K??b A, Berthier E, Nuth C, et al. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 2012, 488: 495-498
[11]  22 Gardner A S, Moholdt G, Cogley J G, et al. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science, 2013, 340: 852-857
[12]  23 Ye Q H, Yao T D, Kang S C, et al. Glacier variations in the Naimona'nyi region, western Himalaya, in the last three decades. Ann Glaciol, 2006, 43: 385-389
[13]  24 叶庆华, 陈锋, 姚檀栋, 等. 近30年来喜马拉雅山脉西段纳木那尼峰地区冰川变化的遥感监测研究. 遥感学报, 2007, 11: 511-520
[14]  25 姚檀栋, 蒲健辰, 田立德, 等. 喜马拉雅山脉西段纳木那尼冰川正在强烈萎缩. 冰川冻土, 2007, 29: 503-508
[15]  26 田立德, 姚檀栋, 文蓉, 等. 青藏高原西部纳木那尼冰芯同位素记录的气候意义初探. 第四纪研究, 2012, 32: 47-52
[16]  27 王祎婷, 陈秀万, 柏延臣, 等. 多源DEM和多时相遥感影像监测冰川体积变化——以青藏高原那木纳尼峰地区为例. 冰川冻土, 2010, 32: 126-132
[17]  30 Zhang G Q, Xie H J, Duan S Q, et al. Water level variation of Lake Qinghai from satellite and in situ measurements under climate change. J Appl Remote Sens, 2011, 5: 053532
[18]  33 王玉哲, 任贾文, 秦大河, 等. 利用卫星资料反演区域冰川冰量变化的尝试——以祁连山为例. 冰川冻土, 2013, 35: 583-592
[19]  34 张国庆, Xie H J, 姚檀栋, 等. 基于ICESat和Landsat的中国十大湖泊水量平衡估算. 科学通报, 2013, 58: 2664-2678
[20]  35 Zhang G Q, Yao T D, Xie H J, et al. Increased mass over the Tibetan Plateau: From lakes or glaciers? Geophys Res Lett, 2013, 40: 2125-2130
[21]  37 Berthier E, Arnaud Y, Vincent C, et al. Biases of SRTM in high-mountain areas: Implications for the monitoring of glacier volume changes. Geophys Res Lett, 2006, 33: L08502, doi: 10.1029/2006GL025862
[22]  38 Gardelle J, Berthier E, Arnaud Y. Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. J Glaciol, 2012, 58: 419-422
[23]  39 王显威, 程晓, 黄华兵, 等. GPS和GLAS数据联合生成Dome-A区域DEM方法研究. 遥感学报, 2013, 17: 439-451
[24]  42 Rodriguez E, Morris C S, Belz J E. A global assessment of the SRTM performance. Photogramm Eng Rem S, 2006, 72: 249-260
[25]  44 杜小平, 郭华东, 范湘涛, 等. 基于ICESat/GLAS数据的中国典型区域SRTM与ASTER GDEM高程精度评价. 地球科学, 2013, 38: 887-897
[26]  45 Willis M J, Melkonian A K, Pritchard M E, et al. Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012. Geophys Res Lett, 2012, 39: L17501, doi: 10.1029/2012GL053136
[27]  46 Berthier E, Toutin T. SPOT5-HRS digital elevation models and the monitoring of glacier elevation changes in North-West Canada and South-East Alaska. Remote Sens Environ, 2008, 112: 2443-2454
[28]  47 Oerlemans J. Glaciers and Climate Change. Rotterdam: Balkema Publishers, 2001. 148
[29]  2 IPCC. Climate Change 2013: The Physical Science Basis Summary for Policymakers Working Group I Contribution to the IPCC Fifth Assessment Report. 2013. 5-15
[30]  3 Jacob T, Wahr J, Pfeffer W T, et al. Recent contributions of glaciers and ice caps to sea level rise. Nature, 2012, 482: 514-518
[31]  4 姚檀栋, 刘时银, 蒲健辰, 等. 高亚洲冰川的近期退缩及其对西北水资源的影响. 中国科学D辑: 地球科学, 2004, 34: 535-543
[32]  5 Kaser G, Grosshauser M, Marzeion B. Contribution potential of glaciers to water availability in different climate regimes. Proc Natl Acad Sci USA, 2010, 107: 20223-20227
[33]  9 Zhang Y S, Liu S Y, Hui D H, et al. Thinning and shrinkage of Laohugou No. 12 glacier in the Western Qilian Mountains, China, from 1957 to 2007. J Mt Sci, 2012, 9: 343-350
[34]  10 王璞玉, 李忠勤, 曹敏, 等. 近50 a来天山博格达峰地区四工河4号冰川表面高程变化特征. 干旱区地理, 2011, 34: 464-470
[35]  16 Nuth C, K??b A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere, 2011, 5: 271-290
[36]  17 Pieczonka T, Bolch T, Buchroithner M. Generation and evaluation of multitemporal digital terrain models of the Mt. Everest area from different optical sensors. ISPRS J Photogramm, 2011, 66: 927-940
[37]  18 Li Z, Xing Q, Liu S Y, et al. Monitoring thickness and volume changes of the Dongkemadi Ice Field on the Qinghai-Tibetan Plateau (1969-2000) using Shuttle Radar Topography Mission and map data. Int J Digit Earth, 2012, 5: 516-532
[38]  19 Gardelle J, Berthier E, Arnaud Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011. Cryosphere, 2013, 7: 1263-1286
[39]  20 Magruder L A, Webb C E, Urban T J, et al. ICESat altimetry data product verification at White Sands Space Harbor. IEEE Trans Geosci Remote Sens, 2007, 45: 147-155
[40]  28 Zwally H J, Schutz B, Abdalati W, et al. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn, 2002, 34: 405-445
[41]  29 Carabajal C C, Harding D J. SRTM C-band and ICESat laser altimetry elevation comparisons as a function of tree cover and relief. Photogramm Eng Rem S, 2006, 72: 287-298
[42]  31 Zhang G Q, Xie H J, Kang S C, et al. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009). Remote Sens Environ, 2011, 115: 1733-1742
[43]  32 Huang X D, Xie H J, Liang T G, et al. Estimating vertical error of SRTM and map-based DEMs using ICESat altimetry data in the eastern Tibetan Plateau. Int J Remote Sens, 2011, 32: 5177-5196
[44]  36 Rignot E, Echelmeyer K, Krabill W. Penetration depth of interferometric synthetic-aperture radar signals in snow and ice. Geophys Res Lett, 2001, 28: 3501-3504
[45]  40 Bhang K J, Schwartz F W, Braun A. Verification of the vertical error in C-band SRTM DEM using ICESat and Landsat-7, Otter Tail County, MN. IEEE Trans Geosci Remote Sens, 2007, 45: 36-44
[46]  41 Kropá?ek J, Neckel N, Bauder A. Estimation of volume changes of mountain glaciers from ICESat data: An example from the Aletsch Glacier, Swiss Alps. Cryosphere Discuss, 2013, 7: 3261-3291
[47]  43 K??b A. Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sens Environ, 2005, 94: 463-474

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133