全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

喷墨打印技术在制备太阳电池中的应用

DOI: 10.1360/N972013-00028, PP. 2033-2038

Keywords: 喷墨打印,太阳电池,金属电极,透明电极,吸收层

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着能源需求与消耗不断增加,新能源的开发和利用受到各国的重视.利用光生伏特效应直接将太阳能转化为电能的太阳电池成为国内外研究的热门项目.人们采用各种印刷技术用来制备太阳电池,其中,喷墨打印技术作为一种非接触式的数字成型技术,具有材料利用率高、低成本、适用于在柔性基底沉积等特点而受到广泛关注.喷墨打印技术被认为是新一代太阳电池制备技术.本文从太阳电池的构造入手,综述了喷墨打印技术制备太阳电池的最新进展,系统介绍了喷墨打印技术制备太阳电池金属电极、透明电极、吸收层等功能层的应用,并对该技术制备太阳电池的前景进行了展望.喷墨打印技术将成为太阳电池制备的重要技术.

References

[1]  2 Cox W R, Chen T, Hayes D J. Micro-optics fabrication by ink-jet printers. Opt Photon News, 2001, 12: 32-35
[2]  3 Shin K Y, Lee M, Kang H, et al. Characterization of inkjet-printed silver patterns for application to printed circuit board (PCB). J Electr Eng Technol, 2013, 8: 603-609
[3]  5 Vaseem M, Lee K M, Hong A R, et al. Inkjet printed fractal-connected electrodes with silver nanoparticle ink. ACS Appl Mater Interf, 2012, 4: 3300-3307
[4]  8 Yang L, Rida A, Vyas R, et al. RFID tag and RF structures on a paper substrate using inkjet-printing technology. IEEE Trans Microwave Theory Tech, 2007, 55: 2894-2901
[5]  11 Shen W, Zhao Y, Zhang C. The preparation of ZnO based gas-sensing thin films by ink-jet printing method. Thin Solid Films, 2005, 483: 382-387
[6]  12 Shen W. Properties of SnO2 based gas-sensing thin films prepared by ink-jet printing. Sensors Actuators B-Chem, 2012, 166: 110-116
[7]  13 Teng K F, Vest R W. Metallization of solar cells with ink jet printing and silver metallo-organic inks. IEEE Transact Compon Hybrids Manuf Technol, 1988, 11: 291-297
[8]  14 Rivkin T, Curtis C, Miedaner A, et al. Direct write processing for photovoltaic cells. In: IEEE Photovoltaic Specialists Conference, 2002. 1326-1329
[9]  15 Kaydanova T, van Hest M, Miedaner A, et al. Direct write contacts for solar cells. In: IEEE Photovoltaic Specialists Conference, 2005. 1305-1308
[10]  17 Jang D, Kim D, Lee B, et al. Nanosized glass frit as an adhesion promoter for ink-jet printed conductive patterns on glass substrates annealed at high temperatures. Adv Funct Mater, 2008, 18: 2862-2868
[11]  18 Shin D Y. Fabrication of an inkjet-printed seed pattern with silver nanoparticulate ink on a textured silicon solar cell wafer. J Micromech Microeng, 2010, 20: 125003
[12]  20 Liu H C, Chuang C P, Chen Y T, et al. Inkjet printing for silicon solar cells. Water Air Soil Pollut-Focus, 2009, 9: 495-498
[13]  24 Jeong J A, Kim J, Kim H K. Ag grid/ITO hybrid transparent electrodes prepared by inkjet printing. Solar Energy Mater Solar Cells, 2011, 95: 1974-1978
[14]  25 Kim J, Na S I, Kim H K. Inkjet printing of transparent InZnSnO conducting electrodes from nano-particle ink for printable organic photovoltaics. Solar Energy Mater Solar Cells, 2012, 98: 424-432
[15]  26 Eom S H, Senthilarasu S, Uthirakumar P, et al. Polymer solar cells based on inkjet-printed PEDOT: PSS layer. Org Electron, 2009, 10: 536-542
[16]  28 Lennon A J, Utama R Y, Lenio M A T, et al. Forming openings to semiconductor layers of silicon solar cells by inkjet printing. Solar Energy Mater Solar Cells, 2008, 92: 1410-1415
[17]  29 Lennon A J, Ho-Baillie A W Y, Wenham S R. Direct patterned etching of silicon dioxide and silicon nitride dielectric layers by inkjet printing. Solar Energy Mater Solar Cells, 2009, 93: 1865-1874
[18]  30 Pi X, Li Q, Li D, et al. Spin-coating silicon-quantum-dot ink to improve solar cell efficiency. Solar Energy Mater Solar Cells, 2011, 95: 2941-2945
[19]  31 Pi X D, Zhang L, Yang D R. Enhancing the efficiency of multicrystalline silicon solar cells by the inkjet printing of silion-quantum-dot Ink. J Phys Chem C, 2012, 116: 21240-21243
[20]  40 Cantatore E E. Applications of Organic and Printed Electronics. Berlin: Springer, 2013
[21]  41 Teichler A, Perelaer J, Schubert U S. Inkjet printing of organic electronics—Comparison of deposition techniques and state-of-the-art developments. J Mater Chem C, 2013, 1: 1910-1925
[22]  1 Habas S E, Platt H A S, van Hest M F A M, et al. Low-cost inorganic solar cells: From ink to printed device. Chem Rev, 2010, 110: 6571-6594
[23]  4 Huang Q J, Shen W F, Song W J. Synthesis of colourless silver precursor ink for printing conductive patterns on silicon nitride substrates. Appl Surf Sci, 2012, 258: 7384-7388
[24]  6 Yang Y, Chang S C, Bharathan J, et al. Organic/polymeric electroluminescent devices processed by hybrid ink-jet printing. J Maters Sci-Mater Electron, 2000, 11: 89-96
[25]  7 Yim Y, Park J, Park B. Solution-processed flexible ITO-free organic light-emitting diodes using patterned polymeric anodes. J Display Technol, 2010, 6: 252-256
[26]  9 Rida A, Yang L, Vyas R, et al. Conductive inkjet-printed antennas on flexible low-cost paper-based substrates for RFID and WSN applications. IEEE Antennas Propag Mag, 2009, 51: 13-23
[27]  10 Virtanen J, Ukkonen L, Bjorninen T, et al. Inkjet-printed humidity sensor for passive UHF RFID systems. IEEE Trans Instrum Meas, 2011, 60: 2768-2777
[28]  16 Curtis C J, van Hest M, Miedaner A, et al. Multi-layer inkjet printed contacts for silicon solar cells. In: Photovoltaic Energy Conversion of the 2006 IEEE 4th World Conference, 2006. 1392-1394
[29]  19 Shin D Y, Cha Y K, Ryu H H, et al. Impact of effective volume ratio of a dispersant to silver nano-particles on silicon solar cell efficiency in direct ink-jet metallization. J Micromech Microeng, 2012, 22: 115007
[30]  21 Hersh P A, Curtis C J, van Hest M F A M, et al. Inkjet printed metallizations for Cu(In1-xGax)Se2 photovoltaic cells. Prog Photovolt: Res Applicat, 2011, 19: 973-976
[31]  22 Ahn B Y, Duoss E B, Motala M J, et al. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science, 2009, 323: 1590-1593
[32]  23 Jeong J A, Lee J, Kim H, et al. Ink-jet printed transparent electrode using nano-size indium tin oxide particles for organic photovoltaics. Solar Energy Mater Solar Cells, 2010, 94: 1840-1844
[33]  27 Steirer K X, Berry J J, Reese M O, et al. Ultrasonically sprayed and inkjet printed thin film electrodes for organic solar cells. Thin Solid Films, 2009, 517: 2781-2786
[34]  32 Kapur V K, Fisher M, Roe R. Nanoparticle oxides precursor inks for thin film copper indium gallium selenide (CIGS) solar cells. MRS Proceedings. Cambridge: Cambridge University Press, 2001, 668. H2.6
[35]  33 Kapur V K, Bansal A, Le P, et al. Non-vacuum processing of CIGS solar cells on flexible polymeric substrates. In: Photovoltaic Energy Conversion of the 2003 IEEE 3th World Conference, 2003. 465-468
[36]  34 Wang W, Su Y W, Chang C H. Inkjet printed chalcopyrite CuInxGa1-xSe2 thin film solar cells. Solar Energy Mater Solar Cells, 2011, 95: 2616-2620
[37]  35 Oh Y, Lee S N, Kim H K, et al. UV-assisted chemical sintering of inkjet-printed TiO2 photoelectrodes for low-temperature flexible dye-sensitized solar cells. J Electrochem Soc, 2012, 159: H777-H781
[38]  36 Marin V, Holder E, Wienk M M, et al. Ink-jet printing of electron donor/acceptor blends: Towards bulk heterojunction solar cells. Macromolec Rapid Commun, 2005, 26: 319-324
[39]  37 Hoth C N, Schilinsky P, Choulis S A, et al. Photovoltaic loss analysis of inkjet-printed polymer solar cells using pristine solvent formulations. Macromol Symp, 2010, 291-292: 287-292
[40]  38 Eom S H, Park H, Mujawar S H, et al. High efficiency polymer solar cells via sequential inkjet-printing of PEDOT: PSS and P3HT: PCBM inks with additives. Org Electron, 2010, 11: 1516-1522
[41]  39 Jung J, Kim D, Lim J, et al. Highly efficient inkjet-printed organic photovoltaic cells. Jpn J Appl Phys, 2010, 49: 05EB03

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133