3 Wang Z, Lauwerijssen M J, Yuan J. Combined age and segregated kinetic model for industrial-scale penicillin fed-batch cultivation. Biotechnol Bioproc Eng, 2005, 10: 142-148
[2]
4 Zangirolami T C, Johansen C L, Nielsen J, et al. Simulation of penicillin production in fed-batch cultivations using a morphologically structured model. Biotechnol Bioeng, 1997, 56: 593-604
13 Culp D W, Dodge C L, Miao Y, et al. The chsA gene from Aspergillus nidulans is necessary for maximal conidiation. FEMS Microbiol Lett, 2000, 182: 349-353
[8]
14 Motoyama T, Sudoh M, Horiuchi H, et al. Isolation and characterization of two chitin synthase genes of Rhizopus oligosporus. Biosci Biotechnol Biochem, 1994, 58: 1685-1693
[9]
15 Motoyama T, Fujiwara M, Kojima N, et al. The Aspergillus nidulans genes chsA and chsD encode chitin synthases which have redundant functions in conidia formation. Mol Gen Genet, 1997, 253: 520-528
[10]
16 Specht C A, Liu Y, Robbins P W, et al. The chsD and chsE genes of Aspergillus nidulans and their roles in chitin synthesis. Fungal Genet Biol, 1996, 20: 153-167
[11]
17 Borgia P T, Iartchouk N, Riggle P J, et al. The chsB gene of Aspergillus nidulans is necessary for normal hyphal growth and development. Fungal Genet Biol, 1996, 20: 193-203
[12]
18 Yanai K, Kojima N, Takaya N, et al. Isolation and characterization of two chitin synthase genes from Aspergillus nidulans. Biosci Biotechnol Biochem, 1994, 58: 1828-1835
[13]
19 Horiuchi H, Fujiwara M, Yamashita S, et al. Proliferation of intrahyphal hyphae caused by disruption of csmA, which encodes a class V chitin synthase with a myosin motor-like domain in Aspergillus nidulans. J Bacteriol, 1999, 181: 3721-3729
[14]
20 Bowen A, Chen-Wu J, Momany M, et al. Classification of fungal chitin synthases. Proc Natl Acad Sci USA, 1992, 89: 519-523
[15]
21 Liu H, Wang P, Gong G, et al. Morphology engineering of Penicillium chrysogenum by RNA silencing of chitin synthase gene. Biotechnol Lett, 2013, 35: 423-429
[16]
22 Liu H, Wang P, Hu Y, et al. Construction of an RNAi expression vector and transformation into Penicillium chrysogenum. Ann Microbiol, 2014, 64: 113-120
24 Liu H, Zheng Z, Wang P, et al. Morphological changes induced by class III chitin synthase gene silencing could enhance penicillin production of Penicillium chrysogenum. Appl Microbiol Biotechnol, 2013, 97: 3363-3372
1 McIntyre M, Müller C, Dynesen J, et al. Metabolic engineering of the morphology of Aspergillus. In: Nielsen J, Eggeling L, Dynesen J, et al, eds. Metabolic Engineering. Berlin Heidelberg: Springer, 2001. 103-128
[21]
2 Papagianni M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv, 2004, 22: 189-259
[22]
6 Thomas C R. Image analysis: Putting filamentous microorganisms in the picture. Trends Biotechnol, 1992, 10: 343-348
10 Gui F, Wang H, Wang P, et al. The Mutation breeding and mutagenic effect of air plasma on Penicillium chrysogenum. Plasma Sci Technol, 2012, 14: 297-302
[26]
26 Obst U. Quorum sensing: Bacterial chatting. Anal Bioanal Chem, 2007, 387: 369-370
[27]
27 Müller C, Hansen K, Szabo P, et al. Effect of deletion of chitin synthase genes on mycelial morphology and culture viscosity in Aspergillus oryzae. Biotechnol Bioeng, 2003, 81: 525-534