全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

太阳耀斑预报研究进展

DOI: 10.1360/N972014-00058, PP. 2452-2463

Keywords: 太阳耀斑,预报因子,机器学习,数据挖掘,预报模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

太阳耀斑是指发生在太阳表面局部区域中突然和大规模的能量释放过程.它是空间环境的主要扰动源,对地球空间环境造成很大影响.太阳耀斑预报是空间天气预报的重要组成部分,对其研究具有重要的实用价值和科学意义.现有的大部分太阳耀斑预报模型是从观测数据提取预报因子,利用各种统计和数据挖掘技术建立预报因子与耀斑发生之间的关系模型,利用建立的模型对未来时间的耀斑发生进行预报.在预报研究中,预报因子、预报方法和预报模型是3个主要研究领域.其中预报因子的选取和数据处理尤为重要,是建立预报模型的前期工作.预报因子主要采用太阳黑子、磁场参量和分形因子等.预报方法包括统计方法、机器学习方法和数据同化方法.统计方法在早期的耀斑预报建模中用的较多,随着数据挖掘技术的发展,越来越多的机器学习方法应用到预报模型中并取得了较好效果.而近期发展的数据同化方法有更好的模型修正能力.预报模型早期基本使用静态模型,后来发展起来的动态模型具有更强的优势;而自组织临界模型在物理方面给了耀斑发生更多的解释.本文分别从这3个方面总结了耀斑预报的研究进展,结合中国科学院国家天文台太阳活动预报中心的工作,评述了一些重要的研究成果.最后,对未来的研究方向进行了总结和展望.

References

[1]  1 林元章. 太阳物理学导论. 北京: 科学出版社, 2000
[2]  2 Zhao P, Zhou X J, Liu G. Decadal-centennial-scale change in Asian-Pacific summer thermal contrast and solar activity. Chin Sci Bull, 2011, 56: 3012-3018
[3]  3 Wu J Y, Shao X H, Kong X G, et al. Imprint of solar activity on Nanjing stalagmite annual layer thickness sequence during the Last Glacial Maximum. Chin Sci Bull, 2006, 51: 441-447
[4]  4 Liao D H, Liao X H. New evidence for possible impact of solar activity on long-term fluctuation of the earth rotation. Chin Sci Bull, 2001, 46: 905-908
[5]  5 郑玲, 傅绥燕, 宗秋刚, 等. 极光半球能量季节变化与太阳活动周期的关联. 科学通报, 2013, 58: 853
[6]  6 王跃, 翦知湣, 赵平, 等. 全新世太阳活动驱动的太平洋上层热力结构的瞬变演化. 科学通报, 2013, 58: 379-384
[7]  7 冯博, 韩延本. 太阳活动对黄帝陵500年侧柏年轮变化的可能影响. 中国科学G辑: 物理学 力学 天文学, 2009, 39: 776-784
[8]  8 陈刘成, 胡彩波, 谢廷峰, 等. 太阳风暴对卫星导航系统的影响分析. 中国科学: 物理学 力学 天文学, 2011, 41: 556-563
[9]  10 Liu L B, Wan W X, Chen Y D, et al. Solar activity effects of the ionosphere: A brief review. Chin Sci Bull, 2011, 56: 1202-1211
[10]  11 赵海娟. 太阳活动预报. 硕士学位论文. 北京: 中国科学院研究生院, 2004
[11]  12 Ning Z J. Power conversion factor in solar flares. Chin Sci Bull, 2012, 57: 1397-1404
[12]  13 Wang J X. Solar activity studies: From a magnetohydrodynamics description to a plasma perspective. Chin Sci Bull, 2012, 57: 1362-1368
[13]  16 Yin Z Q, Ma L H, Han Y B, et al. Long-term variations of solar activity. Chin Sci Bull, 2007, 52: 2737-2741
[14]  17 杨若文, 曹杰, 黄玮, 等. 太阳常数与太阳黑子数关系的交叉小波分析. 科学通报, 2009, 54: 871-875
[15]  18 王家龙. 第24太阳周将是一个低太阳周? 科学通报, 2009, 54: 3664-3668
[16]  19 McIntosh P S. The classification of sunspot groups. Solar Phys, 1990, 125: 251-267
[17]  24 黄鑫. 基于序列数据的太阳耀斑预报方法研究. 博士学位论文. 哈尔滨: 哈尔滨工业大学, 2010
[18]  25 Gallagher P T, Moon Y, Wang H M. Active-region monitoring and flare forecasting I. Data processing and first results. Solar Phys, 2002, 209: 171-183
[19]  26 Abramenko V, Yurchyshyn V, Wang H, et al. Scaling behavior of structure functions of the longitudinal magnetic field in active regions on the sun. Astrophys J, 2002, 577: 487-495
[20]  30 Wheatland M. A test to confirm the source of energy for solar flares. Pub Astron Soc Austr, 2001, 18: 351-354
[21]  33 Leka K D, Barnes G. Photospheric magnetic field properties of flaring versus flare-quiet active regions. II. Discriminant analysis. Astrophys J, 2003, 585: 1296-1306
[22]  34 Leka K D, Branes G. Photospheric magnetic field properties of flaring versus flare-quiet active regions. IV. A statistically significant sample. Astrophys J, 2007, 656: 1173-1186
[23]  37 Xie W B, Wang H M, Jing J, et al. The correlation between expansion speed and magnetic field in solar flare ribbons. Sci China Ser G- Phys Mech Astron, 2009, 52: 1754-1759
[24]  38 Cui Y M, Li R, Zhang L Y, et al. Correlation between solar flare productivity and photospheric magnetic field properties. 1. Maximum horizontal gradient, length of neutral line, number of singular points. Solar Phys, 2006, 237: 45-59
[25]  40 申学会, 陈举华. 分形与混沌理论在湍流研究中的应用. 河南科技大学学报(自然科学版), 2005, 26: 27-30
[26]  41 McAteer R T, Gallagher P T, Ireland J. Statistics of active region complexity: A large-scale fracta dimension survey. Astrophys J, 2005, 631: 628-635
[27]  44 Aschwanden M J, Aschwanden P D. Solar flare geometries. II. The volume fractal dimension. Astrophys J, 2008, 674: 544-553
[28]  48 Yu Z G, Anh V, Eastes R, et al. Multifractal analysis of flare indices and their horizontal visibility graphs. Nonlin Proc Geophys, 2012, 19: 657-665
[29]  49 Wheatland M S. A bayesian approach to solar flare prediction. Astrophys J, 2004, 609: 1134-1139
[30]  50 Wheatland M. A statistical solar flare forecast method. Space Weath, 2005, 3: S07003
[31]  51 Huang X, Yu D, Hu Q. Short-term solar flare prediction using predictor teams. Solar Phys, 2010, 263: 175-184
[32]  52 Giovanelli R G. The relations between eruptions and sunspots. Astrophys J, 1939, 89: 2555-567
[33]  53 Drake J. Characteristics of soft solar X-ray bursts. Solar Phys, 1971, 16: 152-185
[34]  56 Bornmann P, Shaw D. Flare rates and the McIntosh active-region classifications. Solar Phys, 1994, 150: 127-146
[35]  57 Bartkowiak A, Jakimiec M. Distance-based regression in prediction of solar flare activity. Questiio, 1994, 18: 7-12
[36]  58 Zhang G Q, Wang J L. A new scheme used for the short-term prediction of X-xary flares. Progr Geophys, 1994, 9: 54-58
[37]  59 Zhu C L, Wang J L. Verification of short-term prediction of solar X-ray bursts for the maximum phase (2000-2001) of solar cycle 23. Chin J Astron Astrophys, 2003, 3: 563-568
[38]  62 Baena M, Morales R. The influence of active region information on the prediction of solar flares: An empirical model using data mining. Annales Geophys, 2005, 3129-3138
[39]  63 Song H, Tan C, Jing J, et al. Statistical assessment of photospheric magnetic features in imminent solar flare predictions. Solar Phys, 2008, 254: 101-125
[40]  64 Yuan Y, Shih F Y, Jing J, et al. Automated flare forecasting using a statistical learning technique. Res Astron Astrophys, 2010, 10: 785-796
[41]  65 Ahmed O W, Qahwaji R, Colak T, et al. Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Solar Phys, 2013, 283: 157-175
[42]  66 Li R, He H, Cui Y M, et al. Support vector machine combined with K-nearest neighbors for solar flare forecast. Chin J Astron Astrophys, 2007, 7: 441-447
[43]  68 Yu D R, Huang X, Wang H N, et al. Short-term solar flare prediction using a sequential supervised learning method. Solar Phys, 2009, 255: 91-105
[44]  69 Yu D R, Huang X, Wang H N, et al. Short-term solar flare prediction using multi-resolution predictors. Astrophys J, 2010, 709: 321-326
[45]  70 Yu D, Huang X, Wang H N, et al. Short-term solar flare level prediction using a bayesian network approach. Astrophys J, 2010, 710: 869-877
[46]  71 Huang X, Wang H N, Dai X H. Influences of misprediction costs on solar flare prediction. Sci China-Phys Mech Astron, 2012, 55: 1956-1962
[47]  81 Bak P, Tang C, Wiesenfeld K. Self organized criticality: An explanation of 1/f noise. Phys Rev Lett, 1987, 59: 381-384
[48]  82 陈耀. 日冕动力学研究进展: 冕流、日冕物质抛射及其相互作用. 科学通报, 2013, 58: 1620-1650
[49]  9 刘立波, 万卫星, 陈一定, 等. 电离层与太阳活动性关系. 科学通报, 2011, 56: 477-487
[50]  14 Lin J. Studies of solar flares and CMEs related to the space solar missions in the future. Sci China Ser G-Phys Mech Astron, 2009, 52: 1646-1654
[51]  15 Ning Z J. The investigation of the Neupert effect in two solar flares. Sci China Ser G-Phys Mech Astron, 2009, 52: 1686-1690
[52]  20 Sammis I, Tang F, Zirin H. The dependence of large flare occurrence on the magnetic structure of sunspots. Astrophys J, 2000, 540: 583-587
[53]  21 Atac T. Statistical relationship between sunspots and major flares. Astrophys Space Sci, 1987, 129: 203-208
[54]  22 赵明宇, 陈军权, 刘煜, 等. 太阳活动峰年和谷年期间黑子群与耀斑的统计分析. 中国科学: 物理学 力学 天文学, 2014, 44: 109-120
[55]  23 李蓉, 崔延美. 应用数据挖掘技术的短期太阳耀斑预报模型. 中国科学: 物理学 力学 天文学, 2011, 11: 1342-1350
[56]  27 Komm R, Hill F. Solar flares and solar subphotospheric vorticity. J Geophys Res Space Phys, 2009, 114: A06105
[57]  28 Hagyard M. The significance of vector magnetic field measurements. Soc Astron Ital, 1990, 61: 337-357
[58]  29 Schmieder B, Hagyard M, Ai G, et al. Relationship between magnetic field evolution and flaring sites in AR 6659 in June 1991. Solar Phys, 1994, 150: 199-219
[59]  31 崔延美. 太阳光球磁场特性与耀斑相关性研究. 博士学位论文. 北京: 中国科学院研究生院, 2007
[60]  32 Leka K D, Barnes G. Photospheric magnetic field properties of flaring versus flare-quiet active regions. I. Data, general approach, and sample results. Astrophys J, 2003, 595: 1277-1295
[61]  35 Georgoulis M K, Rust D M. Quantitative forecasting of major solar flares. Astrophys J, 2007, 661: L109-L112
[62]  36 Barnes G, Leka K D. Evaluating the preformance of solar flare forecasting methods. Astrophys J, 2008, 688: L107-L110
[63]  39 Cui Y M, Li R, He H, et al. Correlation between solar flare productivity and photospheric magnetic field properties. II Magnetic gradient and magnetic Shear. Solar Phys, 2007, 242: 1-8
[64]  42 Karakatsanis L P, Pavlos G P. SOC and chaos into the solar activity. Nonlin Phenom Compl System, 2008, 11: 280-284
[65]  43 Aschwanden M J, Aschwanden P D. Solar flare geometries. I. The area fractal dimension. Astrophys J, 2008, 674: 530-543
[66]  45 Meunier N. Complexity of magnetic structures: Flares and cycle phase dependence. Astron Astrophys, 2004, 420: 333-342
[67]  46 Lawrence J K, Ruzmaikin A A, Candavid A C. Multifractal measure of the solar magnetic field. Astrophys J, 1993, 417: 805-811
[68]  47 Conlon P A, Gallagher P T, McAteer R T J, et al. Multifractal properties of evolving active regions. Solar Phys, 2008, 248: 297-309
[69]  54 Aschwanden M, Dennis B, Benz A. Logistic avalanche processes, elementary time structures, and frequency distributions in solar flares. Astrophys J, 1998, 497: 972-993
[70]  55 Bai T. Variability of the occurrence frequency of solar flares as a function of peak hard X-ray rate. Astrophys J, 1993, 404: 805-809
[71]  60 Bradshaw G, Fozzard R, Ceci L. A connectionist expert system that actually works. Adv Neu Inform Proc Sys, 1989, 1: 248-255
[72]  61 Qahwaji R, Colak T. Automatic short-term solar flare prediction using machine learning and sunspot associations. Solar phys, 2007, 241: 195-211
[73]  67 Wang H N, Cui Y M, Li R, et al. Solar flare forecasting model supported with artificial neural network techniques. Adv Space Res, 2007, 42: 1464-1468
[74]  72 Li R, Wang H N, Huang X, et al. Solar flare forecasting using learning vector quantity and unsupervised clustering techniques. Sci China-Phy Mech Astron, 2011, 54: 1367-1554
[75]  73 李蓉, 朱杰, 崔延美. 结合活动区光球磁场参量和黑子参量的太阳耀斑预报模型. 科学通报, 2013, 58: 1845-1850
[76]  74 Gao P X, Li K J, Li Q X. Latitude migration of solar activity at high latitudes. Chin Sci Bull, 2008, 53: 8-11
[77]  75 Huang X, Zhang L Y, Wang H N. Improving the performance of solar flare prediction using active longitudes information. Astron Astrophys, 2012, 549: A127
[78]  76 Huang X, Wang H N. Solar flare prediction using highly stressed longitudinal magnetic field parameters. Res Astron Astrophys, 2013, 13: 351-358
[79]  77 马建文. 数据同化算法研发与是实验. 北京: 科学出版社, 2013
[80]  78 Bélanger E, Vincent A, Charbonneau P. Predicting solar flares by data assimilation in avalanche models. I. Model design and validation. Solar Phys, 2007, 245: 141-165
[81]  79 Lu E D, Hamilton R J. Avalanches and the distribution of solar flares. Astrophys J, 1991, 380: L89-L92
[82]  80 Li R, Zhu J. Solar flare forecasting based on sequential sunspot data. Res Astron Astrophys, 2013, 9: 1118-1126
[83]  83 张双南. 我国空间天文发展的现状和展望. 中国科学: 物理学 力学 天文学, 2012, 42: 1308-1320
[84]  84 甘为群, 黄宇, 颜毅华. 太阳空间探测的过去与未来. 中国科学: 物理学 力学 天文学, 2012, 42: 1274-1281

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133