全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

群集运动的理论建模与实证分析

DOI: 10.1360/N972013-00045, PP. 2464-2483

Keywords: 群集运动,基于个体的模型,实证分析,自组织

Full-Text   Cite this paper   Add to My Lib

Abstract:

对于鸟群、鱼群、菌群等生物群体大规模有序群集运动发生机理的探究,吸引了不同学科领域研究者的广泛关注.本文从理论建模和实证分析两个角度出发,对近年来群集运动研究所取得的主要成果进行了回顾,总结了基于个体的群集运动建模研究的最新进展,并对生物群集实证研究中发现的新现象进行了整理和分析,最后简要叙述了该领域中一些有待解决的问题及可能的研究方向.

References

[1]  18 Sumino Y, Nagai K H, Shitaka Y, et al. Large-scale vortex lattice emerging from collectively moving microtubules. Nature, 2012, 483: 448-452
[2]  19 Moussa?d M, Helbing D, Theraulaz G. How simple rules determine pedestrian behavior and crowd disasters. Proc Natl Acad Sci USA, 2011, 108: 6884-6888
[3]  20 Parrish J K, Edelstein-Keshet L. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science, 1999, 284: 99-101
[4]  22 Couzin I D. Collective minds. Nature, 2007, 445: 715
[5]  24 Vicsek T, Zafeiris A. Collective motion. Phys Rep, 2012, 517: 71-140
[6]  27 Presman A S. Electromagnetic Fields and Life. New York: Plenum Press, 1970
[7]  31 Romanczuk P, B?r M, Ebeling W, et al. Active brownian particles. Eur Phys J-Spec Top, 2012, 202: 1-162
[8]  32 Aoki I. A simulation study on the schooling mechanism in fish. Bull Jpn Soc Sci Fish, 1982, 48: 1081-1088
[9]  33 Huth A, Wissel C. The simulation of the movement of fish schools. J Theor Biol, 1992, 156: 365-385
[10]  34 Huth A, Wissel C. The simulation of fish schools in comparison with experimental data. Ecol Model, 1994, 75: 135-146
[11]  38 Couzin I D, Ioannou C C, Demirel G, et al. Uninformed individuals promote democratic consensus in animal groups. Science, 2011, 334: 1578-1580
[12]  39 Wood A J, Ackland G J. Evolving the selfish herd: Emergence of distinct aggregating strategies in an individual-based model. Proc R Soc B, 2007, 274: 1637-1642
[13]  40 Conradt L, Krause J, Couzin I D, et al. "Leading according to need" in self-organizing groups. Am Nat, 2009, 173: 304-312
[14]  53 Ginelli F, Chaté H. Relevance of metric-free interactions in flocking phenomena. Phys Rev Lett, 2010, 105: 168103
[15]  54 Levine H, Rappel W J, Cohen I. Self-organization in systems of self-propelled particles. Phys Rev E, 2000, 63: 017101
[16]  56 Chuang Y L, D'Orsogna M R, Marthaler D, et al. State transitions and the continuum limit for a 2D interacting, self-propelled particle system. Physica D, 2007, 232: 33-47
[17]  57 Mogilner A, Edelstein-Keshet L, Bent L, et al. Mutual interactions, potentials, and individual distance in a social aggregation. J Math Biol, 2003, 47: 353-389
[18]  58 Romanczuk P, Erdmann U. Collective motion of active brownian particles in one dimension. Eur Phys J-Spec Top, 2010, 187: 127-134
[19]  59 Romanczuk P, Schimansky-Geier L. Mean-field theory of collective motion due to velocity alignment. Ecol Complex, 2012, 10: 83-92
[20]  60 Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proc IEEE, 2007, 95: 215-233
[21]  61 Ren W, Beard R W, Atkins E M. Information consensus in multi-vehicle cooperative control. IEEE Contr Syst Mag, 2007, 27: 71-82
[22]  62 Erdmann U, Ebeling W, Mikhailov A S. Noise-induced transition from translational to rotational motion of swarms. Phys Rev E, 2005, 71: 051904
[23]  63 楚天广, 杨正东, 邓魁英, 等. 群体动力学与协调控制研究中的若干问题. 控制理论与应用, 2010, 27: 86-93
[24]  64 Lemasson B H, Anderson J J, Goodwin R A. Motion-guided attention promotes adaptive communications during social navigation. Proc R Soc B, 2013, 280: 20122003
[25]  65 Schultz K M, Passino K M, Seeley T D. The mechanism of flight guidance in honeybee swarms: Subtle guides or streaker bees? J Exp Biol, 2008, 211: 3287-3295
[26]  66 Lemasson B H, Anderson J J, Goodwin R A. Collective motion in animal groups from a neurobiological perspective: The adaptive benefits of dynamic sensory loads and selective attention. J Theor Biol, 2009, 261: 501-510
[27]  67 Lei X K, Liu M Y, Li W B, et al. Distributed motion control algorithm for fission behavior of flocks. In: Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO). Guangzhou: IEEE Press, 2012. 1621-1626
[28]  68 雷小康, 刘明雍, 杨盼盼. 基于邻域跟随的群集系统分群控制算法. 控制与决策, 2013, 28: 741-745
[29]  69 刘明雍, 雷小康, 彭星光. 融合邻域自适应跟随的群集系统分群控制方法研究. 西北工业大学学报, 2013, 31: 250-254
[30]  70 Bode N W F, Franks D W, Wood A J. Limited interactions in flocks: Relating model simulations to empirical data. J R Soc Interface, 2011, 8: 301-304
[31]  71 Bode N W F, Franks D W, Wood A J. Making noise: Emergent stochasticity in collective motion. J Theor Biol, 2010, 267: 292-299
[32]  72 Bode N W F, Wood A J, Franks D W. The impact of social networks on animal collective motion. Anim Behav, 2011, 82: 29-38
[33]  73 Bode N W F, Franks D W, Wood A J. Leading from the front? Social networks in navigating groups. Behav Ecol Sociobiol, 2012, 66: 835-843
[34]  74 Bajec I L, Zimic N, Mraz M. Simulating flocks on the wing: The fuzzy approach. J Theor Biol, 2005, 233: 199-220
[35]  80 Ginelli F, Peruani F, Bar M, et al. Large-scale collective properties of self-propelled rods. Phys Rev Lett, 2010, 104: 184502
[36]  81 Schaller V, Weber C, Semmrich C, et al. Polar patterns of driven filaments. Nature, 2010, 467: 73-77
[37]  82 Riedel I H, Kruse K, Howard J. A self-organized vortex array of hydrodynamically entrained sperm cells. Science, 2005, 309: 300-303
[38]  83 Franks N R, Richardson T. Teaching in tandem-running ants. Nature, 2006, 439: 153
[39]  84 Mann R P, Perna A, Str?mbom D, et al. Multi-scale inference of interaction rules in animal groups using bayesian model selection. PLoS Comput Biol, 2012, 8: e1002308
[40]  85 Grünbaum D, Viscido S, Parrish J K. Extracting interactive control algorithms from group dynamics of schooling fish. Cooperat Control, 2005, 103-117
[41]  86 Bialek W, Cavagna A, Giardina I, et al. Statistical mechanics for natural flocks of birds. Proc Natl Acad Sci USA, 2012, 109: 4786-4791
[42]  87 Moussa?d M, Helbing D, Garnier S, et al. Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proc R Soc B, 2009, 276: 2755-2762
[43]  88 Young G F, Scardovi L, Cavagna A, et al. Starling flock networks manage uncertainty in consensus at low cost. PLoS Comput Biol, 2013, 9: e1002894
[44]  89 Riedel I H, Kruse K, Howard J. A self-organized vortex array of hydrodynamically entrained sperm cells. Science, 2005, 309: 300-303
[45]  90 Schaller V, Weber C, Semmrich C, et al. Polar patterns of driven filaments. Nature, 2010, 467: 73-77
[46]  91 Emmerton J, Delius J D. Beyond Sensation: Visual Cognition in Pigeons. Vision, Brain, and Behavior in Birds, Cambridge: MIT Press, 1993. 377-390
[47]  92 Hildenbrandt H, Carere C, Hemelrijk C K. Self-organized aerial displays of thousands of starlings: A model. Behav Ecol, 2010, 21: 1349-1359
[48]  93 Camperi M, Cavagna A, Giardina I, et al. Spatially balanced topological interaction grants optimal cohesion in flocking models. Interface Focus, 2012, 2: 715-725
[49]  94 Inada Y, Kawachi K. Order and flexibility in the motion of fish schools. J Theor Biol, 2002, 214: 371-387
[50]  95 Nagy M, Vásárhelyi G, Pettit B, et al. Context-dependent hierarchies in pigeons. Proc Natl Acad Sci USA, 2013, 110: 13049-13054
[51]  96 Pettit B, Perna A, Biro D, et al. Interaction rules underlying group decisions in homing pigeons. J R Soc Interface, 2013, 10: 20130529
[52]  97 Ward A J W, Sumpter D J T, Couzin I D, et al. Quorum decision-making facilitates information transfer in fish shoals. Proc Natl Acad Sci USA, 2008, 105: 6948-6953
[53]  98 Conradt L. Models in animal collective decision-making: Information uncertainty and conflicting preferences. Interface Focus, 2012, 2: 226-240
[54]  100 Cavagna A, Giardina I, Ginelli F. Boundary information inflow enhances correlation in flocking. Phys Rev Lett, 2013, 110: 168107
[55]  101 Olson R S, Hintze A, Dyer F C, et al. Predator confusion is sufficient to evolve swarming behaviour. J R Soc Interface, 2013, 10: 20130305
[56]  102 Couzin I D, Laidre M E. Fission-fusion populations. Curr Biol, 2009, 19: 633-635
[57]  103 Chen Z F, Liao H M, Chu T G. Clustering in multi-agent swarms via medium-range interaction. Europhys Lett, 2011, 96: 40015
[58]  104 Kerth G. Group decision-making in fission-fusion societies. Behav Process, 2010, 84: 662-663
[59]  105 Nabet B, Leonard N E, Couzin I D, et al. Dynamics of decision making in animal group motion. J Nonlinear Sci, 2009, 19: 399-435
[60]  106 Leonard N E, Shen T, Nabet B, et al. Decision versus compromise for animal groups in motion. Proc Natl Acad Sci USA, 2012, 109: 227-232
[61]  107 Rubenstein M, Ahler C, Hoff N, et al. Kilobot: A low cost robot with scalable operations designed for collective behaviors. Robot Auton Syst, 2014, 62: 966-975
[62]  108 Sharkey A J C. Robots, insects and swarm intelligence. Artif Intell Rev, 2006, 26: 255-268
[63]  109 雷小康, 刘明雍, 闫茂德, 等. 一种移动机器人的禁忌搜索自主导航算法. 控制与决策, 2011, 26: 1310-1314
[64]  110 Sayama H. Swarm chemistry. Artif Life, 2009, 15: 105-114
[65]  111 Sumpter D, Buhl J, Biro D, et al. Information transfer in moving animal groups. Theor Biosci, 2008, 127: 177-186
[66]  2 Nagy M, Akos Z, Biro D, et al. Hierarchical group dynamics in pigeon flocks. Nature, 2010, 464: 890-893
[67]  9 Katz Y, Tunstr?m K, Ioannou C C, et al. Inferring the structure and dynamics of interactions in schooling fish. Proc Natl Acad Sci USA, 2011, 108: 18720-18725
[68]  16 Deisboeck T S, Couzin I D. Collective behavior in cancer cell populations. Bioessays, 2009, 31: 190-197
[69]  17 Szabó B, Sz?ll?si G J, Gonci B, et al. Phase transition in the collective migration of tissue cells: Experiment and model. Phys Rev E, 2006, 74: 061908
[70]  1 Bajec I L, Heppner F H. Organized flight in birds. Anim Behav, 2009, 78: 777-789
[71]  3 Ballerini M, Cabibbo N, Candelier R, et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc Natl Acad Sci USA, 2008, 105: 1232-1237
[72]  4 Lukeman R, Li Y X, Edelstein-Keshet L. Inferring individual rules from collective behavior. Proc Natl Acad Sci USA, 2010, 107: 12576-12580
[73]  5 Cavagna A, Cimarelli A, Giardina I, et al. Scale-free correlations in starling flocks. Proc Natl Acad Sci USA, 2010, 107: 11865-11870
[74]  6 Lopez U, Gautrais J, Couzin I D, et al. From behavioural analyses to models of collective motion in fish schools. Interface Focus, 2012, 2: 693-707
[75]  7 Makris N C, Ratilal P, Jagannathan S, et al. Critical population density triggers rapid formation of vast oceanic fish shoals. Science, 2009, 323: 1734-1737
[76]  8 Herbert-Read J E, Perna A, Mann R P, et al. Inferring the rules of interaction of shoaling fish. Proc Natl Acad Sci USA, 2011, 108: 18726-18731
[77]  10 Gautrais J, Ginelli F, Fournier R, et al. Deciphering interactions in moving animal groups. PLoS Comput Biol, 2012, 8: e1002678
[78]  11 Buhl J, Sumpter D J T, Couzin I D, et al. From disorder to order in marching locusts. Science, 2006, 312: 1402-1406
[79]  12 Bazazi S, Buhl J, Hale J J, et al. Collective motion and cannibalism in locust migratory bands. Curr Biol, 2008, 18: 735-739
[80]  13 Sokolov A, Aranson I S, Kessler J O, et al. Concentration dependence of the collective dynamics of swimming bacteria. Phys Rev Lett, 2007, 98: 158102
[81]  14 Dombrowski C, Cisneros L, Chatkaew S, et al. Self-concentration and large-scale coherence in bacterial dynamics. Phys Rev Lett, 2004, 93: 098103
[82]  15 Chen X, Dong X, Beer A, et al. Scale-invariant correlations in dynamic bacterial clusters. Phys Rev Lett, 2012, 108: 148101
[83]  21 Couzin I D, Krause J. Self-organization and collective behavior in vertebrates. Adv Stud Behav, 2003, 32: 1-75
[84]  23 Giardina I. Collective behavior in animal groups: Theoretical models and empirical studies. HFSP J, 2008, 2: 205-219
[85]  25 Schellinck J, White T. A review of attraction and repulsion models of aggregation: Methods, findings and a discussion of model validation. Ecol Model, 2011, 222: 1897-1911
[86]  26 Selous E. Thought Transference (or What?) in Birds. London: Constable & Company Ltd., 1931
[87]  28 Potts W K. The chorus-line hypothesis of manoeuvre coordination in avian flocks. Nature, 1984, 309: 344-345
[88]  29 Ballerini M, Cabibbo N, Candelier R, et al. Empirical investigation of starling flocks: A benchmark study in collective animal behaviour. Anim Behav, 2008, 76: 201-215
[89]  30 Branson K, Robie A A, Bender J, et al. High-throughput ethomics in large groups of drosophila. Nat Methods, 2009, 6: 451-457
[90]  35 Reynolds C W. Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Computer Graph, 1987, 21: 25-34
[91]  36 Couzin I D, Krause J, James R, et al. Collective memory and spatial sorting in animal groups. J Theor Biol, 2002, 218: 1-11
[92]  37 Couzin I D, Krause J, Franks N R, et al. Effective leadership and decision-making in animal groups on the move. Nature, 2005, 433: 513-516
[93]  41 Conradt L, Roper T J. Conflicts of interest and the evolution of decision sharing. Philos Trans R Soc Lond B Biol Sci, 2009, 364: 807-819
[94]  42 Freeman R, Biro D. Modelling group navigation: Dominance and democracy in homing pigeons. J Navig, 2009, 62: 33-40
[95]  43 Guttal V, Couzin I D. Social interactions, information use, and the evolution of collective migration. Proc Natl Acad Sci USA, 2010, 107: 16172-16177
[96]  44 Yates C A, Baker R E, Erban R, et al. Refining self-propelled particle models for collective behaviour. Can Appl Math Quart, 2010, 18: 299-350
[97]  45 Huepe C, Aldana M. New tools for characterizing swarming systems: A comparison of minimal models. Physica A, 2008, 387: 2809-2822
[98]  46 Vicsek T, Czirók A, Ben-Jacob E, et al. Novel type of phase transition in a system of self-driven particles. Phys Rev Lett, 1995, 75: 1226
[99]  47 Aldana M, Dossetti V, Huepe C, et al. Phase transitions in systems of self-propelled agents and related network models. Phys Rev Lett, 2007, 98: 095702
[100]  48 Pimentel J A, Aldana M, Huepe C, et al. Intrinsic and extrinsic noise effects on phase transitions of network models with applications to swarming systems. Phys Rev E, 2008, 77: 061138
[101]  49 Chaté H, Ginelli F, Grégoire G, et al. Modeling collective motion: Variations on the vicsek model. Eur Phys J B, 2008, 64: 451-456
[102]  50 Tian B M, Yang H X, Li W, et al. Optimal view angle in collective dynamics of self-propelled agents. Phys Rev E, 2009, 79: 052102
[103]  51 Zhang J, Zhao Y, Tian B M, et al. Accelerating consensus of self-driven swarm via adaptive speed. Physica A, 2009, 388: 1237-1242
[104]  52 Gao J X, Havlin S, Xu X M, et al. Angle restriction enhances synchronization of self-propelled objects. Phys Rev E, 2011, 84: 046115
[105]  55 D'Orsogna M R, Chuang Y L, Bertozzi A L, et al. Self-propelled particles with soft-core interactions: Patterns, stability, and collapse. Phys Rev Lett, 2006, 96: 104302
[106]  75 Romanczuk P, Couzin I D, Schimansky-Geier L. Collective motion due to individual escape and pursuit response. Phys Rev Lett, 2009, 102: 010602
[107]  76 Fotowat H, Gabbiani F. Collision detection as a model for sensory-motor integration. Annu Rev Neurosci, 2011, 34: 1-19
[108]  77 Strandburg-Peshkin A, Twomey C R, Bode N W F, et al. Visual sensory networks and effective information transfer in animal groups. Curr Biol, 2013, 23: 709-711
[109]  78 Peruani F, Deutsch A, B?r M. Nonequilibrium clustering of self-propelled rods. Phys Rev E, 2006, 74: 030904
[110]  79 Grossman D, Aranson I S, Jacob E B. Emergence of agent swarm migration and vortex formation through inelastic collisions. New J Phys, 2008, 10: 023036
[111]  99 Str?mbom D. Collective motion from local attraction. J Theor Biol, 2011, 283: 145-151
[112]  112 Liu H B, Abraham A, Clerc M. Chaotic dynamic characteristics in swarm intelligence. Appl Soft Comput, 2007, 7: 1019-1026

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133