全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

纳米尺度下不同曲率半径针尖接触滑动过程的分子动力学模拟

DOI: 10.1360/csb2014-59-27-2734, PP. 2734-2742

Keywords: 纳米尺度,原子力显微镜,探针,接触,滑动,磨损,分子动力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对不同磨损情况的原子力显微镜探针,运用三维分子动力学模拟方法研究不同曲率半径探针接触压入及滑动过程中单晶铜基体表面材料的变形及摩擦磨损机制.研究结果发现,在探针接触压入单晶铜基体时,接触作用力、位错及位错发射等缺陷随着接触深度或接触半径的增大而增加,位错发射方向为[101]和[101].探针在单晶铜基体表面滑动过程中,探针曲率半径增大,因材料塑性变形形成的沟槽、法向力及摩擦力也随之增大,而摩擦系数随之减小.堆垛层错沿着滑动方向扩展并随探针曲率半径增大而增多.此外,摩擦磨损过程中产生的隆起堆积原子数量随着探针曲率半径或滑动距离增大而增多.

References

[1]  1 Bhushan B. Nano to microscale wear and mechanical characterization using scanning probe microscopy. Wear, 2001, 251: 1105-1123
[2]  5 Shang G, Qiu X, Wang C, et a1. Analysis of lateral force contribution to the topography in contact mode AFM. App1 Phys A, 1998, 66: 333-335
[3]  6 Aime J, Elkaakour Z, Gauthier S, et a1. Role of the force of friction on curved surfaces in scanning force microscopy. Surf Sci, 1995, 329: 149-156
[4]  8 Grafstrom S, Ackermann J, Hagen T, et a1. Analysis of lateral force efects on the topography in scanning force microscopy. Vac Sci Technol B, 1994, 12: 1559-1564
[5]  9 Weng S Z. Nanotribology. Beijing: Tsinghua University Press, 2001
[6]  10 Kim Y, Na K, Choi S, et al. Atomic force microscopy-based nano-lithography for nano-patterning: A molecular dynamic study. J Mater Proc Technol, 2004, 155: 1847-1854
[7]  11 Yan Y D, Sun T, Dong S, et al. Molecular dynamics simulation of processing using AFM pin tool. Appl Surf Sci, 2006, 252: 7523-7531
[8]  12 Yan Y, Sun T, Dong S, et al. Study on effects of the feed on AFM-based nano-scratching process using MD simulation. Comput Mate Sci, 2007, 40: 1-5
[9]  13 Zhang L, Tanaka H. Towards a deeper understanding of wear and friction on the atomic scale—A molecular dynamics analysis. Wear, 1997, 211: 44-53
[10]  14 Khan H M, Kim S G. On the wear mechanism of thin nickel film during AFM-based scratching process using molecular dynamics. J Mech Sci Technol, 2011, 25: 2111-2120
[11]  15 Belak J, Glosli J N, Boercker D B, et al. Molecular dynamics simulation of mechanical deformation of ultra-thin metal and ceramic films. In: Proceedings of the Spring meeting of the Materials Research Society (MRS), San Francisco. Cambridge: Cambridge Univ Press, 1995
[12]  2 Yan Y, Sun T, Liang Y, et al. Effects of scratching directions on AFM-based abrasive abrasion process. Tribol Int, 2009, 42: 66-70
[13]  3 Blnnig G K, Quate C F. Atomic force microscope. Phys Rev Lett, 1986, 56: 930-934
[14]  4 Zhao X Z, Wang Y Y. Operation mode of AFM considering friction and slope of sample surface. J Mech Eng, 2009, 45: 295-298
[15]  7 Boef A J. The influence of lateral forces in scanning force microscopy. Rev Sci Instrum, 1991, 62: 88-92
[16]  16 Glosli J N, Belak J, Philpott M R. Molecular dynamics modeling of ultrathin amorphous carbon films. In: Proceedings of the Fourth International Symposium on Diamond Materials. Pennington, United States, 1995
[17]  17 Brown N J, Fuchs B A, Hed P P, et al. The response of isotropic brittle materials to abrasive processes. In: Proceedings of the 43rd Annual Symposium on Source. C. Denver, CO: IEEE, 1989. 611-616
[18]  18 Nos S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys, 1984, 81: 511
[19]  19 Allen M P, Tildesley D J. Computer Simulation of Liquids. New York: Oxford University Press, 1989
[20]  20 Zhu P Z, Hu Y Z, Ma T B, et al. Study of AFM-based nanometric cutting process using molecular dynamics. Appl Surf Sci, 2010, 256: 7160-7165
[21]  21 Foiles S M, Baskes M I, Daw M S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B, 1986, 33: 7983-7991
[22]  22 Daw M S, Foiles S M, Baskes M I. The embedded-atom method: A review of theory and applications. Mater Sci Rep, 1993, 9: 251-310
[23]  23 Zhang J, Sun T, Yan Y, et al. Molecular dynamics study of groove fabrication process using AFM-based nanometric cutting technique. Appl Phys A-Mater Sci Proc, 2009, 94: 593-600
[24]  24 Pei Q, Lu C, Fang F, et al. Nanometric cutting of copper: A molecular dynamics study. Comput Mater Sci, 2006, 37: 434-441
[25]  25 Kelchner C L, Plimpton S J, Hamilton J C. Dislocation nucleation and defect structure during surface indentation. Phys Rev B, 1998, 58: 11085-11088
[26]  26 Zimmerman J, Kelchner C, Klein P, et al. Surface step effects on nanoindentation. Phys Rev Lett, 2001, 87: 165507
[27]  27 Li J, Vliet V, Zhu T, et al. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature, 2002, 418: 307-310
[28]  28 Pei Q X, Lu C, Lee H P. Large scale molecular dynamics study of nanometric machining of copper. Comput Mater Scie, 2007, 41: 177-185
[29]  29 Tsuzuki H, Branicio P S, Rino J P. Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comp Phys Commun, 2007, 177: 518-523
[30]  30 Faken D, J Nsson H. Systematic analysis of local atomic structure combined with 3D computer graphics. Comput Mater Sci, 1994, 2: 279-286
[31]  31 Plimpton S J. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117: 1-19
[32]  32 Moore D F. Principles and Applications of Tribology. New York: Pergamon Press, 1975
[33]  33 Lafaye S, Troyon M. On the friction behaviour in nanoscratch testing. Wear, 2006, 261: 905-913
[34]  34 Lovell M, Deng Z, Khonsari M. Experimental characterization of sliding friction: Crossing from deformation to plowing contact. J Tribol, 2000, 122: 856-863
[35]  35 Zhu P, Hu Y, Ma T, et al. Molecular dynamics study on friction due to ploughing and adhesion in nanometric scratching process. Tribol Lett, 2011, 41: 41-46
[36]  36 Lafaye S. True solution of the ploughing friction coefficient with elastic recovery in the case of a conical tip with a blunted spherical extremity. Wear, 2008, 264: 550-554
[37]  37 Lafaye S, Gauthier C, Schirrer R. The ploughing friction: Analytical model with elastic recovery for a conical tip with a blunted spherical extremity. Tribol Lett, 2006, 21: 95-99

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133