全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

油菜次生休眠种子转录组的RNA-seq分析

DOI: 10.1360/csb2014-59-27-2687, PP. 2687-2697

Keywords: 油菜,次生休眠,种子转录组,转录组测序

Full-Text   Cite this paper   Add to My Lib

Abstract:

油菜种子次生休眠特性是油菜产区自生苗长期留存并持续危害的主要原因,也是转基因油菜环境安全评估的重要性状.为探讨该性状的分子生态学特征,本研究以强次生休眠油菜品种的成熟种子为材料,对次生休眠前种子(CK)和次生休眠后种子(SD)的转录组进行了RNA-seq分析.2份样本测序所得的有效数据均超过了4Gb,并从头拼接出序列长度≥100bp的转录本314261个,其中29740个转录本的序列长度≥500bp.根据功能注释信息,在≥500bp的长序列转录本中有1641个成员被分类到24种COG类群,有16515个成员被GO分类到2648个功能节点.在P≤0.001显著性水平和2倍以上RPKM变化条件下,鉴别出452个代表性的长序列差异表达转录本,其中343个成员有序列高度相似的拟南芥同源基因对应.数据显示,绝大多数ABA,GA合成代谢和信号转导基因能从休眠种子转录组中找到同源转录本,但它们的表达水平在样本间多无显著差异.综合GO富集、KEGG富集以及种子休眠调控基因同源转录本的差异表达信息,脂肪酸代谢信号有可能参与到油菜种子次生休眠的诱导发生.本研究结果对于认识油菜自生苗发生规律和评估转基因油菜环境安全性具有重要意义.

References

[1]  2 Pessel F D, Lecomte J, Emeriau V, et al. Persistence of oilseed rape (Brassica napus L.) outside of cultivated fields. Theor Appl Genet, 2001, 102: 841-846
[2]  6 Amen R D. A model of seed dormancy. Bot Rev, 1968, 34: 1-31
[3]  7 Momoh E J J, Zhou W J, Kristiansson B. Variation in the development of secondary dormancy in oilseed rape genotypes under conditions of stress. Weed Res, 2002, 42: 446-455
[4]  9 Finkelstein R, Reeves W, Ariizumi T, et al. Molecular aspects of seed dormancy. Annu Rev Plant Biol, 2008, 59: 387-415
[5]  10 Gruber S, Emrich K, Claupein W. Classification of canola (Brassica napus) winter cultivars by secondary dormancy. Can J Plant Sci, 2009, 89: 613-619
[6]  16 Harper A L, Trick M, Higgins J, et al. Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat Biotech, 2012, 30: 798-802
[7]  21 Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods, 2008, 5: 621-628
[8]  22 Langmead B, Salzberg S L. Fast gapped-read alignment with Bowtie 2. Nat Methods, 2012, 9: 357-359
[9]  23 Audic S, Claverie J M. The significance of digital gene expression profiles. Genome Res, 1997, 7: 986-995
[10]  24 Wang X, Wang H, Wang J, et al. The genome of the mesopolyploid crop species Brassica rapa. Nat genet, 2011, 43: 1035-1039
[11]  36 Barrero J M, Millar A A, Griffiths J, et al. Gene expression profiling identifies two regulatory genes controlling dormancy and ABA sensitivity in Arabidopsis seeds. Plant J, 2010, 61: 611-622
[12]  37 Monke G, Seifert M, Keilwagen J, et al. Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Res, 2012, 40: 8240-8254
[13]  40 Carrera E, Holman T, Medhurst A, et al. Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant J, 2008, 53: 214-224
[14]  42 Footitt S, Marquez J, Schmuths H, et al. Analysis of the role of COMATOSE and peroxisomal beta-oxidation in the determination of germination potential in Arabidopsis. J Exp Bot, 2006, 57: 2805-2814
[15]  1 Adler L S, Wickler K, Wyndham P S, et al. Potential for persistence of genes escaped from canola: Germination cues in crop, wild, and crop—wild hybrid Brassica rapa. Func Ecol, 1993, 7: 736-745
[16]  3 Chadoeuf R, Darmency H, Maillet J, et al. Survival of buried seeds of interspecific hybrids between oilseed rape, hoary mustard and wild radish. Field Crops Res, 1998, 58: 197-204
[17]  4 Beckie H J, Harker K N, Hall L M, et al. A decade of herbicide-resistant crops in Canada. Can J Plant Sci, 2006, 86: 1243-1264
[18]  5 Finch-Savage W E, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol, 2006, 171: 501-523
[19]  8 Gulden R H, Shirtliffe S J, Thomas A G. Secondary seed dormancy prolongs persistence of volunteer canola (Brassica napus) in western Canada. Weed Sci, 2003, 51: 904-913
[20]  11 Webera E A, Gruber S, Stockmann F, et al. Can low-dormancy oilseed rape (Brassica napus) genotypes be used to minimize volunteer problems? Field Crops Res, 2013, 147: 32-39
[21]  12 Holdsworth M J, Finch-Savage W E, Grappin P, et al. Post-genomics dissection of seed dormancy and germination. Trends Plant Sci, 2008, 13: 7-13
[22]  13 Fei H, Tsang E, Cutler A J. Gene expression during seed maturation in Brassica napus in relation to the induction of secondary dormancy. Genomics, 2007, 89: 419-428
[23]  14 Fei H, Ferhatoglu Y, Tsang E, et al. Metabolic and hormonal processes associated with the induction of secondary dormancy in Brassica napus seeds. Botany, 2009, 87: 585-596
[24]  15 Parkin I A, Gulden S M, Sharpe A G, et al. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics, 2005, 171: 765-781
[25]  17 Pekrun C, Lutman P J W, Baeumer K. Induction of secondary dormancy in rape seeds (Brassica napus L.) by prolonged imbibition under conditions of water stress or oxygen deficiency in darkness. Eur J Agron, 1997, 6: 245-255
[26]  18 Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotech, 2011, 29: 644-652
[27]  19 Thimm O, Blasing O, Gibon Y, et al. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J, 2004, 37: 914-939
[28]  20 Maere S, Heymans K, Kuiper M. BiNGO: A cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 2005, 21: 3448-3449
[29]  25 Dave A, Hernandez M L, He Z, et al. 12-oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis. Plant Cell, 2011, 23: 583-599
[30]  26 Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol, 2005, 56: 165-185
[31]  27 Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225-251
[32]  28 Weiner J J, Peterson F C, Volkman B F, et al. Structural and functional insights into core ABA signaling. Curr Opin Plant Biol, 2010, 13: 495-502
[33]  29 Daviere J M, Achard P. Gibberellin signaling in plants. Development, 2013, 140: 1147-1151
[34]  30 Chiu R S, Nahal H, Provart N J, et al. The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature. BMC Plant Biol, 2012, 12: 15
[35]  31 Penfield S, Josse E M, Halliday K J. A role for an alternative splice variant of PIF6 in the control of Arabidopsis primary seed dormancy. Plant Mol Biol, 2010, 73: 89-95
[36]  32 Pinfield-Wells H, Rylott E L, Gilday A D, et al. Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism. Plant J, 2005, 43: 861-872
[37]  33 Pracharoenwattana I, Cornah J E, Smith S M. Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell, 2005, 17: 2037-2048
[38]  34 Cadman C S, Toorop P E, Hilhorst H W, et al. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J, 2006, 46: 805-822
[39]  35 Carrera E, Holman T, Medhurst A, et al. Gene expression profiling reveals defined functions of the ATP-binding cassette transporter COMATOSE late in phase II of germination. Plant Physiol, 2007, 143: 1669-1679
[40]  38 Nishimura N, Kitahata N, Seki M, et al. Analysis of ABA hypersensitive germination2 revealed the pivotal functions of PARN in stress response in Arabidopsis. Plant J, 2005, 44: 972-984
[41]  39 Liu Y, Geyer R, van Zanten M, et al. Identification of the Arabidopsis REDUCED DORMANCY 2 gene uncovers a role for the polymerase associated factor I complex in seed dormancy. PLoS One, 2011, 6: e22241
[42]  41 Okamoto M, Tatematsu K, Matsui A, et al. Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant J, 2010, 62: 39-51

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133