2 Pessel F D, Lecomte J, Emeriau V, et al. Persistence of oilseed rape (Brassica napus L.) outside of cultivated fields. Theor Appl Genet, 2001, 102: 841-846
[2]
6 Amen R D. A model of seed dormancy. Bot Rev, 1968, 34: 1-31
[3]
7 Momoh E J J, Zhou W J, Kristiansson B. Variation in the development of secondary dormancy in oilseed rape genotypes under conditions of stress. Weed Res, 2002, 42: 446-455
[4]
9 Finkelstein R, Reeves W, Ariizumi T, et al. Molecular aspects of seed dormancy. Annu Rev Plant Biol, 2008, 59: 387-415
[5]
10 Gruber S, Emrich K, Claupein W. Classification of canola (Brassica napus) winter cultivars by secondary dormancy. Can J Plant Sci, 2009, 89: 613-619
[6]
16 Harper A L, Trick M, Higgins J, et al. Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat Biotech, 2012, 30: 798-802
[7]
21 Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods, 2008, 5: 621-628
[8]
22 Langmead B, Salzberg S L. Fast gapped-read alignment with Bowtie 2. Nat Methods, 2012, 9: 357-359
[9]
23 Audic S, Claverie J M. The significance of digital gene expression profiles. Genome Res, 1997, 7: 986-995
[10]
24 Wang X, Wang H, Wang J, et al. The genome of the mesopolyploid crop species Brassica rapa. Nat genet, 2011, 43: 1035-1039
[11]
36 Barrero J M, Millar A A, Griffiths J, et al. Gene expression profiling identifies two regulatory genes controlling dormancy and ABA sensitivity in Arabidopsis seeds. Plant J, 2010, 61: 611-622
[12]
37 Monke G, Seifert M, Keilwagen J, et al. Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Res, 2012, 40: 8240-8254
[13]
40 Carrera E, Holman T, Medhurst A, et al. Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant J, 2008, 53: 214-224
[14]
42 Footitt S, Marquez J, Schmuths H, et al. Analysis of the role of COMATOSE and peroxisomal beta-oxidation in the determination of germination potential in Arabidopsis. J Exp Bot, 2006, 57: 2805-2814
[15]
1 Adler L S, Wickler K, Wyndham P S, et al. Potential for persistence of genes escaped from canola: Germination cues in crop, wild, and crop—wild hybrid Brassica rapa. Func Ecol, 1993, 7: 736-745
[16]
3 Chadoeuf R, Darmency H, Maillet J, et al. Survival of buried seeds of interspecific hybrids between oilseed rape, hoary mustard and wild radish. Field Crops Res, 1998, 58: 197-204
[17]
4 Beckie H J, Harker K N, Hall L M, et al. A decade of herbicide-resistant crops in Canada. Can J Plant Sci, 2006, 86: 1243-1264
[18]
5 Finch-Savage W E, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol, 2006, 171: 501-523
[19]
8 Gulden R H, Shirtliffe S J, Thomas A G. Secondary seed dormancy prolongs persistence of volunteer canola (Brassica napus) in western Canada. Weed Sci, 2003, 51: 904-913
[20]
11 Webera E A, Gruber S, Stockmann F, et al. Can low-dormancy oilseed rape (Brassica napus) genotypes be used to minimize volunteer problems? Field Crops Res, 2013, 147: 32-39
[21]
12 Holdsworth M J, Finch-Savage W E, Grappin P, et al. Post-genomics dissection of seed dormancy and germination. Trends Plant Sci, 2008, 13: 7-13
[22]
13 Fei H, Tsang E, Cutler A J. Gene expression during seed maturation in Brassica napus in relation to the induction of secondary dormancy. Genomics, 2007, 89: 419-428
[23]
14 Fei H, Ferhatoglu Y, Tsang E, et al. Metabolic and hormonal processes associated with the induction of secondary dormancy in Brassica napus seeds. Botany, 2009, 87: 585-596
[24]
15 Parkin I A, Gulden S M, Sharpe A G, et al. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics, 2005, 171: 765-781
[25]
17 Pekrun C, Lutman P J W, Baeumer K. Induction of secondary dormancy in rape seeds (Brassica napus L.) by prolonged imbibition under conditions of water stress or oxygen deficiency in darkness. Eur J Agron, 1997, 6: 245-255
[26]
18 Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotech, 2011, 29: 644-652
[27]
19 Thimm O, Blasing O, Gibon Y, et al. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J, 2004, 37: 914-939
[28]
20 Maere S, Heymans K, Kuiper M. BiNGO: A cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 2005, 21: 3448-3449
[29]
25 Dave A, Hernandez M L, He Z, et al. 12-oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis. Plant Cell, 2011, 23: 583-599
[30]
26 Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol, 2005, 56: 165-185
[31]
27 Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225-251
[32]
28 Weiner J J, Peterson F C, Volkman B F, et al. Structural and functional insights into core ABA signaling. Curr Opin Plant Biol, 2010, 13: 495-502
[33]
29 Daviere J M, Achard P. Gibberellin signaling in plants. Development, 2013, 140: 1147-1151
[34]
30 Chiu R S, Nahal H, Provart N J, et al. The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature. BMC Plant Biol, 2012, 12: 15
[35]
31 Penfield S, Josse E M, Halliday K J. A role for an alternative splice variant of PIF6 in the control of Arabidopsis primary seed dormancy. Plant Mol Biol, 2010, 73: 89-95
[36]
32 Pinfield-Wells H, Rylott E L, Gilday A D, et al. Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism. Plant J, 2005, 43: 861-872
[37]
33 Pracharoenwattana I, Cornah J E, Smith S M. Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell, 2005, 17: 2037-2048
[38]
34 Cadman C S, Toorop P E, Hilhorst H W, et al. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J, 2006, 46: 805-822
[39]
35 Carrera E, Holman T, Medhurst A, et al. Gene expression profiling reveals defined functions of the ATP-binding cassette transporter COMATOSE late in phase II of germination. Plant Physiol, 2007, 143: 1669-1679
[40]
38 Nishimura N, Kitahata N, Seki M, et al. Analysis of ABA hypersensitive germination2 revealed the pivotal functions of PARN in stress response in Arabidopsis. Plant J, 2005, 44: 972-984
[41]
39 Liu Y, Geyer R, van Zanten M, et al. Identification of the Arabidopsis REDUCED DORMANCY 2 gene uncovers a role for the polymerase associated factor I complex in seed dormancy. PLoS One, 2011, 6: e22241
[42]
41 Okamoto M, Tatematsu K, Matsui A, et al. Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant J, 2010, 62: 39-51