全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

含卤有机化合物与甲状腺素转运蛋白相互作用的卤代效应

DOI: 10.1360/N972013-00059, PP. 2673-2680

Keywords: 甲状腺素转运蛋白,甲状腺素,甲状腺素干扰物,有机卤代化合物,卤键,卤氢键,诱导效应,疏水效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

甲状腺素(thyroidhormones,THs)干扰物(thyroiddisruptingchemicals,TDCs)能与THs竞争甲状腺素转运蛋白(transthyretin,TTR)的结合位点而影响THs体内平衡.TDCs结构中的卤素基团是影响TDCs与TTR相互作用的关键性结构因子.本研究分析了卤代化合物与TTR的复合物结构和卤代化合物与TTR的相互作用势(logRP),发现卤键和卤氢键、诱导效应和疏水效应是影响有机卤化合物与TTR相互作用的关键因素.卤键(主要是卤氧键)和卤氢键的形成,增强了有机卤化合物与TTR的相互作用.对可电离化合物,诱导效应是卤素基团影响logRP大小的重要因素,疏水效应是卤素基团影响多溴联苯醚(PBDEs)等不可电离化合物与TTR相互作用的主要因素.

References

[1]  5 Murk A J, Rijntjes E, Blaauboer B J, et al. Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals. Toxicol In Vitro, 2013, 27: 1320-1346
[2]  9 Auffinger P, Hays F A, Westhof E, et al. Halogen bonds in biological molecules. Proc Natl Acad Sci USA, 2004, 101: 16789-16794
[3]  10 Metrangolo P, Resnati G. Halogen versus hydrogen. Science, 2008, 321: 918-919
[4]  22 Brouwer A, Morse D C, Lans M C, et al. Interactions of persistent environmental organohalogens with the thyroid hormone system: Mechanisms and possible consequences for animal and human health. Toxicol Ind Health, 1998, 14: 59-84
[5]  23 Kodavanti P R, Curras-Collazo M C. Neuroendocrine actions of organohalogens: Thyroid hormones, arginine vasopressin, and neuroplasticity. Front Neuroendocrinol, 2010, 31: 479-496
[6]  24 Li F, Xie Q, Li X H, et al. Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-beta: In vitro and in silico investigations. Environ Health Perspect, 2010, 118: 602-606
[7]  25 Gl?ttli A, Daura X, Seebach D, et al. Can one derive the conformational preference of a beta-peptide from its CD spectrum? J Am Chem Soc, 2002, 124: 12972-12978
[8]  26 Verma R P, Hansch C. Use of 13C NMR chemical shift as QSAR/QSPR descriptor. Chem Rev, 2011, 111: 2865-2899
[9]  28 Rayne S, Forest K. pKa values of the monohydroxylated polychlorinated biphenyls (OH-PCBs), polybrominated biphenyls (OH-PBBs), polychlorinated diphenyl ethers (OH-PCDEs), and polybrominated diphenyl ethers (OH-PBDEs). J Environ Sci Health A Tox Hazard Subst Environ Eng, 2010, 45: 1322-1346
[10]  1 Ren X M, Guo L H. Assessment of the binding of hydroxylated polybrominated diphenyl ethers to thyroid hormone transport proteins using a site-specific fluorescence probe. Environ Sci Technol, 2012, 46: 4633-4640
[11]  2 Patrick L. Thyroid disruption: Mechanism and clinical implications in human health. Altern Med Rev, 2009, 14: 326-346
[12]  3 Boas M, Feldt-Rasmussen U, Main K M. Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol, 2012, 355: 240-248
[13]  4 Mortimer R H, Landers K A, Balakrishnan B, et al. Secretion and transfer of the thyroid hormone binding protein transthyretin by human placenta. Placenta, 2012, 33: 252-256
[14]  6 Weiss J M, Andersson P L, Lamoree M H, et al. Competitive binding of poly- and perfluorinated compounds to the thyroid hormone transport protein transthyretin. Toxicol Sci, 2009, 109: 206-216
[15]  7 Hamers T, Kamstra J H, Sonneveld E, et al. In vitro profiling of the endocrine-disrupting potency of brominated flame retardants. Toxicol Sci, 2006, 92: 157-173
[16]  8 Yang X H, Xie H B, Chen J W, et al. Anionic phenolic compounds bind stronger with transthyretin than their neutral forms: Nonnegligible mechanisms in virtual screening of endocrine disrupting chemicals. Chem Res Toxicol, 2013, 26: 1340-1347
[17]  11 Lu Y X, Shi T, Wang Y, et al. Halogen bonding: A novel interaction for rational drug design? J Med Chem, 2009, 52: 2854-2862
[18]  12 Lu Y, Wang Y, Xu Z J, et al. C-X…H contacts in biomolecular systems: How they contribute to protein-ligand binding affinity. J Phys Chem B, 2009, 113: 12615-12621
[19]  13 Lu Y, Wang Y, Zhu W L. Nonbonding interactions of organic halogens in biological systems: Implications for drug discovery and biomolecular design. Phys Chem Chem Phys, 2010, 12: 4543-4551
[20]  14 Parisini E, Metrangolo P, Pilati T, et al. Halogen bonding in halocarbon-protein complexes: A structural survey. Chem Soc Rev, 2011, 40: 2267-2278
[21]  15 Zhou P, Tian F, Zou J, et al. Rediscovery of halogen bonds in protein-ligand complexes. Min Rev Med Chem, 2010, 10: 309-314
[22]  16 Voth A R, Hays F A, Ho P S. Directing macromolecular conformation through halogen bonds. Proc Natl Acad Sci USA, 2007, 104: 6188-6193
[23]  17 Hardegger L A, Kuhn B, Spinnler B, et al. Systematic investigation of halogen bonding in protein-ligand interactions. Angew Chem Int Ed, 2011, 50: 314-318
[24]  18 Scholfield M R, Zanden C M, Carter M, et al. Halogen bonding (X-bonding): A biological perspective. Protein Sci, 2013, 22: 139-152
[25]  19 Ibrahim M A. AMBER empirical potential describes the geometry and energy of noncovalent halogen interactions better than advanced semiempirical quantum mechanical method PM6-DH2X. J Phys Chem B, 2012, 116: 3659-3669
[26]  20 Carter M, Rappe A K, Ho P S. Scalable anisotropic shape and electrostatic models for biological bromine halogen bonds. J Chem Theory Comput, 2012, 8: 2461-2473
[27]  21 Diamanti-Kandarakis E, Bourguignon J P, Giudice L C, et al. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr Rev, 2009, 30: 293-342
[28]  27 袁履冰, 高占先, 陈宏博. 有机化学. 北京: 高等教育出版社, 1999. 309
[29]  29 Han J, Tao F M. Correlations and predictions of pKa values of fluorophenols and bromophenols using hydrogen-bonded complexes with ammonia. J Phys Chem A, 2006, 110: 257-263
[30]  30 Meylan W M, Howard P H. Atom/fragment contribution method for estimating octanol-water partition coefficients. J Pharm Sci, 1995, 84: 83-92

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133