全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

微结构疏水表面振动液滴的动态特性

DOI: 10.1360/N972014-00022, PP. 2663-2667

Keywords: 浸润转变,振动,液滴,共振,疏水表面

Full-Text   Cite this paper   Add to My Lib

Abstract:

以聚二甲基硅氧烷(PDMS)材料为基底,采用光刻技术制备了微方柱状疏水表面,研究了垂直振动作用下,液滴在疏水表面的Wenzel-Cassie状态转变特性.研究表明,在某一振动频率下,随着振幅逐渐增大,不同体积液滴均能实现Wenzel-Cassie状态转变;当施加的振动频率接近某一体积液滴固有频率时,由于该液滴与振动平面发生共振,液滴发生浸润状态转变所需能量最小;该频率下其他体积液滴虽也可以实现浸润状态转变,但由于所施加振动频率偏离其固有频率,液滴发生浸润转变所需能量并非最小;振动频率偏离其固有频率越远,所需能量越大.结合表面物理化学和振动力学对该现象进行了理论分析.

References

[1]  5 Wang F C, Yang F Q, Zhao Y P. Size effect on the coalescence-induced self-propelled droplet. Appl Phys Lett, 2011, 98: 05112
[2]  7 陈晓玲, 吕田. 粗糙表面液滴表观形态研究. 中国科学G辑: 物理学 力学 天文学, 2009, 39: 58-62
[3]  8 刘天庆, 孙玮, 孙相彧, 等. 疏水表面上冷凝液滴发生弹跳的机制与条件分析. 物理化学学报, 2012, 28: 1206-1212
[4]  11 Liu G, Fu L, Rode A V, et al. Water droplet motion control on superhydrophobic surfaces: Exploiting the Wenzel-to-Cassie transition. Langmuir, 2011, 27: 2595-2600
[5]  12 Luo C, Xiang M M, Liu X C, et al. Transition from Cassie-Baxter to Wenzel states on microline-formed PDMS surfaces induced by evaporation or pressing of water droplets. Microfluid Nanofluid, 2011, 10: 831-842
[6]  17 Jung Y C, Bhushan B. Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces. Langmuir, 2009, 25: 9208-9218
[7]  18 Bormashenko E, Musin A, Whyman G, et al. Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces: Is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair? Langmuir, 2007, 23: 6501-6503
[8]  1 Ma X H, Rose J W, Xu D Q, et al. Advances in dropwise condensation heat transfer: Chinese research. Chem Eng J, 2000, 78: 87-93
[9]  2 廖强, 顾扬彪, 朱恂, 等. 梯度表面能材料表面上滴状凝结换热. 化工学报, 2007, 58: 567-574
[10]  3 赵亚溥. 表面与界面物理力学. 北京: 科学出版社, 2012. 173-191
[11]  4 马学虎, 宋天一, 兰忠, 等. 固液界面能差效应与冷凝传热强化研究进展. 化工学报, 2006, 57: 1763-1775
[12]  6 Cheng Y T, Rodak D E. Is the lotus leaf superhydrophobic? Appl Phys Lett, 2005, 86: 144101
[13]  9 Lin F, Zhang Y N, Xi J M. Petal effect: A superhydrophobic state with high adhesive force. Langmuir, 2008, 24: 4114-4119
[14]  10 Forsberg P, Nikolajeff F, Karlsson M. Cassie-Wenzel and Wenzel-Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure. Soft Matter, 2011, 7: 104-109
[15]  13 Manukyan G, Oh J M, Ende D, et al. Electrical switching of wetting states on superhydrophobic surfaces: A route towards reversible Cassie-to-Wenzel transitions. Phys Rev Lett, 2011, 106: 014501
[16]  14 Lei W, Jia Z H, He J C, et al. Dynamic properties of vibrated drops on a superhydrophobic patterned surface. App Therm Eng, 2014, 62: 507-512
[17]  15 Bormashenko E, Musin A, Whyman G, et al. Wetting transition and depinning of the triple line. Langmuir, 2012, 28: 3460-3464
[18]  16 Noblin X, Buguin A, Brochard-Wyart F. Vibrated sessile drops: Transition between pinned and mobile contact line oscillations. Eur Phys J E, 2004, 14: 395-404
[19]  19 Jonathan B, Boreyko, Chen C H. Restoring superhydrophobicity of lotus leaves with vibration-induced dewetting. Phys Rev Lett, 2009, 103: 174502
[20]  20 Zhang X, Shi F, Niu J, et al. Superhydrophobic surfaces: From structural control to functional application. J Mater Chem, 2008, 18: 621-633

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133