全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

关节软骨和骨关节炎的傅里叶变换红外光谱学显微成像研究进展

DOI: 10.1360/N972014-00158, PP. 2645-2651

Keywords: 红外光谱,显微成像,高分辨,关节软骨,骨关节炎

Full-Text   Cite this paper   Add to My Lib

Abstract:

傅里叶变换红外光谱学显微成像(FTIRI)将傅里叶变换红外光谱测量和微区成像技术有机结合起来,同时采集样品的分子光谱和表面形貌信息,可以获得样品空间各微区位置的组成和分子结构信息.本文简述了该成像系统的构成、特点和工作原理,介绍了FTIRI在生物医学/光学领域新开辟的关节软骨光谱成像.重点介绍了该技术用于研究正常关节软骨和骨关节炎软骨所取得的代表性成果和进展,分析了部分局限性及其在该领域的未来发展前景.

References

[1]  4 YIN J H, Xia Y. Chemical visualization of individual chondrocytes in articular cartilage by attenuated-total-reflection Fourier transform infrared microimaging. Biomed Opt Express, 2011, 2: 937-945
[2]  5 Zheng S, Xia Y, Bidthanapally A, et al. Damages to the extracellular matrix in articular cartilage due to cryopreservation by microscopic magnetic resonance imaging and biochemistry. Magn Reson Imaging, 2009, 27: 648-655
[3]  6 Wilson W, Huyghe J M, van Donkelaar C C. Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition. Biomech Model Mechanobiol, 2007, 6: 43-53
[4]  7 Chen S S, Falcovitz Y H, Schneiderman R, et al. Depth-dependent compressive properties of normal aged human femoral head articular cartilage: Relationship to fixed charge density. Osteoarth Cart, 2001, 9: 561-569
[5]  12 Yin J H, Xia Y, Xiao Z Y. Comparison of macromolecular component distributions in osteoarthritic and healthy cartilages by Fourier transform infrared imaging. J Innov Opt Health Sci, 2013, 6: 1350048
[6]  13 Bi X, Li G, Doty S B, et al. A novel method for determination of collagen orientation in cartilage by Fourier transform infrared imaging spectroscopy (FT-IRIS). Osteoarth Cart, 2005, 13: 1050-1058
[7]  14 Ramakrishnan N, Xia Y, Bidthanapally A, et al. Determination of zonal boundaries in articular cartilage using infrared dichroism. Appl Spectrosc, 2007, 61: 1404-1409
[8]  15 Xia Y, Ramakrishnan N, Bidthanapally A, et al. The depth-dependent anisotropy of articular cartilage by Fourier-transform infrared imaging (FTIRI). Osteoarth Cart, 2007, 15: 780-788
[9]  16 Ramakrishnan N, Xia Y, Bidthanapally A. Polarized IR microscopic imaging of articular cartilage. Phys Med Biol, 2007, 52: 4601-4614
[10]  17 Lee J H, Xia Y. Quantitative zonal differentiation of articular cartilage by microscopic magnetic resonance imaging, polarized light microscopy, and Fourier-transform infrared imaging. Microsc Res Technol, 2013, 76: 625-632
[11]  18 Ramakrishnan N, Xia Y, Bidthanapally A. Fourier-transform infrared anisotropy in cross and parallel sections of tendon and articular cartilage. J Orthop Surg Res, 2008, 3: 48
[12]  19 Xia Y, Mittelstaedt D, Ramakrishnan N, et al. Depth-dependent anisotropies of amides and sugar in perpendicular and parallel sections of articular cartilage by Fourier transform infrared imaging (FTIRI). Microsc Res Tech, 2011, 74: 122-132
[13]  20 Yin J H, Xia Y, Ramakrishnan N. Depth-dependent anisotropy of proteoglycan in articular cartilage by Fourier transform infrared imaging. Vib Spectrosc, 2011, 57: 338-341
[14]  22 Potter K, Kidder L H, Levin I W, et al. Imaging of collagen and proteoglycan in cartilage sections using Fourier transform infrared spectral imaging. Arthr Rheum, 2001, 44: 846-855
[15]  23 Bi X, Yang X, Bostrom M P, et al. Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage. Biochim Biophys Acta, 2006, 1758: 934-941
[16]  24 Rieppo L, Saarakkala S, Narhi T, et al. Application of second derivative spectroscopy for increasing molecular specificity of Fourier transform infrared spectroscopic imaging of articular cartilage. Osteoarth Cart, 2012, 20: 451-459
[17]  25 Rieppo L, Narhi T, Helminen H J, et al. Infrared spectroscopic analysis of human and bovine articular cartilage proteoglycans using carbohydrate peak or its second derivative. J Biomed Opt, 2013, 18: 097006
[18]  26 David-Vaudey E, Burghardt A, Keshari K, et al. Fourier transform infrared imaging of focal lesions in human osteoarthritic cartilage. Eur Cell Mater, 2005, 10: 51-60
[19]  27 Bi X, Yang X, Bostrom M P G, et al. Fourier transform infrared imaging and MR microscopy studies detect compositional and structural changes in cartilage in a rabbit model of osteoarthritis. Anal Bioanal Chem, 2007, 387: 1601-1612
[20]  28 Yin J H, Xia Y. Macromolecular concentrations in bovine nasal cartilage by Fourier transform infrared imaging and principal component regression. Appl Spectrosc, 2010, 64: 1199-1208
[21]  29 Yin J H, Xia Y, Lu M. Concentration profiles of collagen and proteoglycan in articular cartilage by Fourier transform infrared imaging and principal component regression. Spectrochim Acta A, 2012, 88: 90-96
[22]  30 West P A, Bostrom M P G, Torzilli P A, et al. Fourier transform infrared spectral analysis of degenerative cartilage: An infrared fiber optic probe and imaging study. Appl Spectrosc, 2004, 58: 376-381
[23]  31 Hanifi A, McCarthy H, Roberts S, et al. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues. PLoS One, 2013, 8: e64822
[24]  32 Yin J H, Xia Y. Proteoglycan concentrations in healthy and diseased articular cartilage by Fourier transform infrared imaging and principal component regression. Spectrochim Acta A, 2014, 133: 825-830
[25]  1 Petibois C, Deleris G. Chemical mapping of tumor progression by FT-IR imaging: Towards molecular histopathology. Trends Biotechnol, 2006, 24: 455-462
[26]  2 Wood B R, Chiriboga L, Yee H, et al. Fourier transform infrared (FTIR) spectral mapping of the cervical transformation zone, and dysplastic squamous epithelium. Gynecol Oncol, 2004, 93: 59-68
[27]  3 Lewis E N, Treado P J, Reeder R C, et al. Fourier transform spectroscopic imaging using an infrared focal-plane array detector. Anal Chem, 1995, 67: 3377-3381
[28]  8 Xia Y, Alhadlaq H, Ramakrishnan N, et al. Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging. J Struct Biol, 2008, 164: 88-95
[29]  9 Tan A H C, Mitra A K, Chang P C C, et al. Assessment of blood-induced cartilage damage in rabbit knees using scanning electron microscopy. J Orthop Surg, 2004, 12: 199-204
[30]  10 Yamamoto K, Shishido T, Masaoka T, et al. Morphological studies on the ageing and osteoarthritis of the articular cartilage in C57 black mice. J Orthop Surg, 2005, 13: 8-18
[31]  11 Camacho N P, West P, Torzilli P A, et al. FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage. Biopolymers, 2001, 62: 1-8
[32]  21 Rieppo J, Hyttinen M M, Halmesmaki E, et al. Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation. Osteoarth Cart, 2009, 17: 448-455

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133