全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

(超)微电极在能源材料领域中的应用

DOI: 10.1360/N972014-00377, PP. 2851-2860

Keywords: 微电极,锂离子电池,电解质,液液界面,燃料电池

Full-Text   Cite this paper   Add to My Lib

Abstract:

简述了超微电极技术的原理、特点以及使用条件.对比了(超)微电极、大面积多孔电极以及理论模拟等方法研究电池电极材料的结果,表明(超)微电极的实验结果和理论模拟结果之间具有较高的一致性.本文从电化学原理的角度论述了常规尺寸电极上得到结果和理论模拟结果之间出现差异和分歧的原因,并论证了(超)微电极在研究储能材料本征动力学行为和测量物理化学参数方面的重要性和必要性.介绍了(超)微电极/扫描电化学显微镜在筛选燃料电池氧气还原催化剂领域中的应用及原理.针对双电解质金属锂电池所面临的问题,介绍了微纳尺度空心针尖支撑的液液界面上锂离子相转移动力学行为的最新研究结果.

References

[1]  1 Burlatsky S F, Reinhardt W P. Rate constants and the limiting diffusion flux for reactions on microelectrodes. J Phys Chem, 1995, 99: 5518-5524
[2]  2 Nirmaier H P, Henze G. Characteristic behavior of macro-, semimicro- and microelectrodes in voltammetric and chronoamperometric measurements. Electroanalysis, 1997, 9: 619-624
[3]  8 黄卫华, 张丽瑶, 程伟, 等. 纳米电极时空分辨监测单个PC12细胞多巴胺量子释放. 高等学校化学学报, 2003, 24: 425-427
[4]  9 何立铭, 段开来, 张晨, 等. 微碳纤电极与细胞量子化分泌的记录方法. 生物物理学报, 2002, 18: 147-155
[5]  10 Vivier V, Cachet-Vivier C, Cha C S, et al. Cavity microelectrode for studying battery materials: Application to polyaniline powder. Electrochem Commun, 2000, 2: 180-185
[6]  11 Vivier V, Belair S, Cachet-Vivier C, et al. A rapid evaluation of vanadium oxide and manganese oxide as battery materials with a micro-electrochemistry technique. J Power Sources, 2001, 103: 61-66
[7]  12 Montenegro M I, Montenegro I, Queirós M A, et al. Microelectrodes: Theory and Applications. London: Springer, 1991
[8]  22 Basha C A, Rajendran L. Theories of ultramicrodisc electrodes: Review article. Int J Electrochem Sci, 2006, 1: 268-282
[9]  23 Zhang C, Fan F R F, Bard A J. Electrochemistry of oxygen in concentrated NaOH solutions: Solubility, diffusion coefficients, and superoxide formation. J Am Chem Soc, 2009, 131: 177-181
[10]  24 Wang K L, Lu J T, Zhuang L. Direct determination of diffusion coefficient for borohydride anions in alkaline solutions using chronoamperometry with spherical Au electrodes. J Electroanal Chem, 2005, 585: 191-196
[11]  25 Hedges W M, Pletcher D, Gosden C. Microelectrode studies of the Li/Li+ couple in SOCl2/LiAlCl4. J Electrochem Soc, 1987, 134: 1334-1340
[12]  26 Genders J D, Hedges W M, Pletcher D. Application of microelectrodes to the study of the Li/Li+ couple in ether solvents. Part 1. J Chem Soc Farad Trans I, 1984, 80: 3399-3408
[13]  27 Hedges W M, Pletcher D. Application of microelectrodes to the study of the Li/Li+ couple in ether solvents. Part 2. Temperature dependence. J Chem Soc Farad Trans I, 1986, 82: 179-188
[14]  29 Monroe C, Newman J. The effect of interfacial deformation on electrodeposition kinetics. J Electrochem Soc, 2004, 151: A880-A886
[15]  30 Monroe C, Newman J. Dendrite growth in lithium/polymer systems: A propagation model for liquid electrolytes under galvanostatic conditions. J Electrochem Soc, 2003, 150: A1377-A1384
[16]  31 Akolkar R. Mathematical model of the dendritic growth during lithium electrodeposition. J Power Sources, 2013, 232: 23-28
[17]  32 Brissot C, Rosso M, Chazalviel J N, et al. Dendritic growth mechanisms in lithium/polymer cells. J Power Sources, 1999, 81-82: 925-929
[18]  34 Brissot C, Rosso M, Chazalviel J N, et al. Concentration measurements in lithium/polymer-electrolyte/lithium cells during cycling. J Power Sources, 2001, 94: 212-218
[19]  35 Rosso M, Gobron T, Brissot C, et al. Onset of dendritic growth in lithium/polymer cells. J Power Sources, 2001, 97-98: 804-806
[20]  38 Christie A M, Lisowska-Oleksiak A, Vincent C A. The lithium/polymer electrolyte interface. Electrochim Acta, 1995, 40: 2405-2411
[21]  39 Crowther O, West A C. Effect of electrolyte composition on lithium dendrite growth. J Electrochem Soc, 2008, 155: A806-A811
[22]  40 Wu B, Chen X, Zhang C, et al. Lithium-air and lithium-copper batteries based on a polymer stabilized interface between two immiscible electrolytic solutions (ITIES). New J Chem, 2012, 36: 2140-2145
[23]  41 Verbrugge M W, Koch B J. Microelectrode study of the lithium/propylene carbonate interface: Temperature and concentration dependence of physicochemical parameters. J Electrochem Soc, 1994, 141: 3053-3059
[24]  46 Ura H, Nishina T, Uchida I. Electrochemical measurements of single particles of Pd and LaNi5 with a microelectrode technique. J Electroanal Chem, 1995, 396: 169-173
[25]  54 刘军, 杨毅夫, 邵惠霞, 等. LaNi4.7Al0.3单颗粒微电极电化学行为的研究. 高等学校化学学报, 2006, 27: 1962-1964
[26]  55 Xiao L, Lu J T, Liu P F, et al. Proton diffusion determination and dual structure model for nickel hydroxide based on potential step measurements on single spherical beads. J Phys Chem B, 2005, 109: 3860-3867
[27]  59 Totir D A, Cahan B D, Scherson D A. Electrochemical characterization of lithiated transition metal oxide cathode particles in the absence of carbon, binders and other additives. Electrochim Acta, 1999, 45: 161-166
[28]  60 许杰, 姚万浩, 姚宜稳, 等. 添加剂氟代碳酸乙烯酯对锂离子电池性能的影响. 物理化学学报, 2009, 25: 201-206
[29]  61 陶颖, 陈振华, 祝宝军, 等. 软溶胶-凝胶法制备LiCoO2薄膜电极. 无机材料学报, 2003, 18: 500-504
[30]  65 Yamamura S, Koshika H, Nishizawa M, et al. In situ conductivity measurements of LiMn2O4 thin films during lithium insertion/extraction by using interdigitated microarray electrodes. J Solid State Electrochem, 1998, 2: 211-215
[31]  67 庄全超, 田雷雷, 魏国祯, 等. 石墨电极首次阴极极化过程的两电极和三电极电化学阻抗谱研究. 科学通报, 2009, 54: 1233-1237
[32]  68 Fernández J L, Walsh D A, Bard A J. Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy M-Co (M: Pd, Ag, Au). J Am Chem Soc, 2004, 127: 357-365
[33]  69 Chen S, Kucernak A. Electrocatalysis under conditions of high mass transport rate: Oxygen reduction on single submicrometer-sized Pt particles supported on carbon. J Phys Chem B, 2004, 108: 3262-3276
[34]  70 Wang Y, Zhou H. A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. J Power Sources, 2010, 195: 358-361
[35]  74 Nestor U, Wen H, Girma G, et al. Facilitated Li+ ion transfer across the water/1,2-dichloroethane interface by the solvation effect. Chem Commun, 2014, 50: 1015-1017
[36]  3 Lawrence N S, Jiang L, Jones T G J, et al. A thin-layer amperometric sensor for hydrogen sulfide: The use of microelectrodes to achieve a membrane-independent response for clark-type sensors. Anal Chem, 2003, 75: 2499-2503
[37]  4 Ruiz V, Malmberg H, Blanco C, et al. A study of faradaic phenomena in activated carbon by means of macroelectrodes and single particle electrodes. J Electroanal Chem, 2008, 618: 33-38
[38]  5 Bond A M, Henderson T L E, Mann D R, et al. A fast electron transfer rate for the oxidation of ferrocene in acetonitrile or dichloromethane at platinum disk ultramicroelectrodes. Anal Chem, 1988, 60: 1878-1882
[39]  6 Zhao X, Zhang D, Ren X, et al. Quasi-random assembled single particle electrode and instinct electrochemical performance of LiFePO4 in wide temperature scope. J Electroanal Chem, 2014, 712: 113-118
[40]  7 Kim H S, Itoh T, Nishizawa M, et al. Microvoltammetric study of electrochemical properties of a single spherical nickel hydroxide particle. Int J Hydrog Energy, 2002, 27: 295-300
[41]  13 Morgan D, Van der Ven A, Ceder G. Li conductivity in LixMPO4 (M=Mn,Fe,Co,Ni) olivine materials. Electrochem Solid-State Lett, 2004, 7: A30-A32
[42]  14 Munakata H, Takemura B, Saito T, et al. Evaluation of real performance of LiFePO4 by using single particle technique. J Power Sources, 2012, 217: 444-448
[43]  15 Dokko K, Nakata N, Suzuki Y, et al. High-rate lithium deintercalation from lithiated graphite single-particle electrode. J Phys Chem C, 2010, 114: 8646-8650
[44]  16 Christie A M, Vincent C A. The Li/Li+ couple in propylene carbonate electrolytes and poly(methyl methacrylate) gels. J Appl Electrochem, 1996, 26: 255-267
[45]  17 Christie L, Christie A M, Vincent C A. Measurement of the apparent lithium ion transference number and salt diffusion coefficient in solid polymer electrolytes. Electrochim Acta, 1999, 44: 2909-2913
[46]  18 郭朝中, 陈昌国. 超微电极技术的发展现状. 化学研究与应用, 2010, 22: 1479-1485
[47]  19 丁黎明, 董绍俊, 汪尔康. 高分子电解质中电活性分子扩散的微电极伏安法研究. 电化学, 1997, 3: 233-242
[48]  20 Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications. New York: Wiley, 2001. 169-176
[49]  21 Shoup D, Szabo A. Chronoamperometric current at finite disk electrodes. J Electroanal Chem Interf Electrochem, 1982, 140: 237-245
[50]  28 Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc, 2005, 152: A396-A404
[51]  33 Brissot C, Rosso M, Chazalviel J N, et al. In situ study of dendritic growth in lithium/PEO-salt/lithium cells. Electrochim Acta, 1998, 43: 1569-1574
[52]  36 Wang X M, Iyoda M, Nishina T, et al. Microelectrode investigation of the lithium redox behavior in plasticized polymer electrolytes. J Power Sources, 1997, 68: 487-491
[53]  37 Kato Y, Ishihara T, Uchimoto Y, et al. Charge-transfer reaction rate of Li/Li+ couple in poly(ethylene glycol) dimethyl ether based electrolytes. J Phys Chem B, 2004, 108: 4794-4798
[54]  42 Cha C S, Li C M, Yang H X, et al. Powder microelectrodes. J Electroanal Chem, 1994, 368: 47-54
[55]  43 Come J, Taberna P L, Hamelet S, et al. Electrochemical kinetic study of LiFePO4 using cavity microelectrode. J Electrochem Soc, 2011, 158: A1090-A1093
[56]  44 Zhang C Z, Deng H, Zhao T, et al. Electrochemical behavior of Fe(VI)-Fe(III) system in concentrated NaOH solution. Ferrates, 2008, 985: 81-93
[57]  45 Bursell M, Bj?rnbom P. A method for studying microelectrodes by means of micromanipulators as applied to carbon agglomerates from oxygen reduction electrode catalyst. J Electrochem Soc, 1990, 137: 363-364
[58]  47 Kim H S, Nishizawa M, Uchida I. Single particle electrochemistry for hydrogen storage alloys, MmNi3.55Co0.75Mn0.4Al0.3. Electrochim Acta, 1999, 45: 483-488
[59]  48 Nishizawa M, Hashitani R, Itoh T, et al. Measurements of chemical diffusion coefficient of lithium ion in graphitized mesocarbon microbeads using a microelectrode. Electrochem Solid-State Lett, 1998, 1: 10-12
[60]  49 Dokko K, Mohamedi M, Fujita Y, et al. Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods. J Electrochem Soc, 2001, 148: A422-A426
[61]  50 Dokko K, Horikoshi S, Itoh T, et al. Microvoltammetry for cathode materials at elevated temperatures: Electrochemical stability of single particles. J Power Sources, 2000, 90: 109-115
[62]  51 Zhang D, Popov B N, White R E. Modeling lithium intercalation of a single spinel particle under potentiodynamic control. J Electrochem Soc, 2000, 147: 831-838
[63]  52 Jebaraj A J J, Scherson D A. Microparticle electrodes and single particle microbatteries: Electrochemical and in situ microraman spectroscopic studies. Acc Chem Res, 2013, 46: 1192-1205
[64]  53 Gao F, Yang Y, Liu J, et al. Single-particle investigation on the activation process of a hydrogen storage alloy. Int J Hydrog Energy, 2010, 35: 1273-1279
[65]  56 Uchida I, Mohamedi M, Dokko K, et al. Recent investigations on thin films and single particles of transition metal oxides for lithium batteries. J Power Sources, 2001, 97-98: 518-524
[66]  57 吕东生, 李伟善. LiMn2O4/LiPF6-(EC+DEC)溶液界面电化学研究. 无机材料学报, 2004, 19: 801-808
[67]  58 吕东生, 李伟善. 尖晶石锂锰氧化物锂离子嵌脱过程的交流阻抗谱研究. 化学学报, 2003, 61: 225-229
[68]  62 Chung K Y, Kim K B. Investigation of structural fatigue in spinel electrodes using in situ laser probe beam deflection technique. J Electrochem Soc, 2002, 149: A79-A85
[69]  63 Rao M, Liebenow C, Jayalakshmi M, et al. High-temperature combustion synthesis and electrochemical characterization of LiNiO2, LiCoO2 and LiMn2O4 for lithium-ion secondary batteries. J Solid State Electrochem, 2001, 5: 348-354
[70]  64 Zhang D, Popov B N, White R E. Electrochemical investigation of CrO2.65 doped LiMn2O4 as a cathode material for lithium-ion batteries. J Power Sources, 1998, 76: 81-90
[71]  66 Kato Y, Ishihara T, Ikuta H, et al. A high electrode-reaction rate for high-power-density lithium-ion secondary batteries by the addition of a lewis acid. Angew Chem Int Ed, 2004, 43: 1966-1969
[72]  71 Wang Y, He P, Zhou H. A lithium-air capacitor-battery based on a hybrid electrolyte. Energy Environ Sci, 2011, 4: 4994-4999
[73]  72 Li L, Zhao X, Manthiram A. A dual-electrolyte rechargeable Li-air battery with phosphate buffer catholyte. Electrochem Commun, 2012, 14: 78-81
[74]  73 Zhang D, Yan K, Wu F, et al. A high power density dual-electrolyte lithium-silver battery with Celgard? 2325 separator. Electrochim Acta, 2014, 116: 429-433

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133