1 Burlatsky S F, Reinhardt W P. Rate constants and the limiting diffusion flux for reactions on microelectrodes. J Phys Chem, 1995, 99: 5518-5524
[2]
2 Nirmaier H P, Henze G. Characteristic behavior of macro-, semimicro- and microelectrodes in voltammetric and chronoamperometric measurements. Electroanalysis, 1997, 9: 619-624
10 Vivier V, Cachet-Vivier C, Cha C S, et al. Cavity microelectrode for studying battery materials: Application to polyaniline powder. Electrochem Commun, 2000, 2: 180-185
[6]
11 Vivier V, Belair S, Cachet-Vivier C, et al. A rapid evaluation of vanadium oxide and manganese oxide as battery materials with a micro-electrochemistry technique. J Power Sources, 2001, 103: 61-66
[7]
12 Montenegro M I, Montenegro I, Queirós M A, et al. Microelectrodes: Theory and Applications. London: Springer, 1991
[8]
22 Basha C A, Rajendran L. Theories of ultramicrodisc electrodes: Review article. Int J Electrochem Sci, 2006, 1: 268-282
[9]
23 Zhang C, Fan F R F, Bard A J. Electrochemistry of oxygen in concentrated NaOH solutions: Solubility, diffusion coefficients, and superoxide formation. J Am Chem Soc, 2009, 131: 177-181
[10]
24 Wang K L, Lu J T, Zhuang L. Direct determination of diffusion coefficient for borohydride anions in alkaline solutions using chronoamperometry with spherical Au electrodes. J Electroanal Chem, 2005, 585: 191-196
[11]
25 Hedges W M, Pletcher D, Gosden C. Microelectrode studies of the Li/Li+ couple in SOCl2/LiAlCl4. J Electrochem Soc, 1987, 134: 1334-1340
[12]
26 Genders J D, Hedges W M, Pletcher D. Application of microelectrodes to the study of the Li/Li+ couple in ether solvents. Part 1. J Chem Soc Farad Trans I, 1984, 80: 3399-3408
[13]
27 Hedges W M, Pletcher D. Application of microelectrodes to the study of the Li/Li+ couple in ether solvents. Part 2. Temperature dependence. J Chem Soc Farad Trans I, 1986, 82: 179-188
[14]
29 Monroe C, Newman J. The effect of interfacial deformation on electrodeposition kinetics. J Electrochem Soc, 2004, 151: A880-A886
[15]
30 Monroe C, Newman J. Dendrite growth in lithium/polymer systems: A propagation model for liquid electrolytes under galvanostatic conditions. J Electrochem Soc, 2003, 150: A1377-A1384
[16]
31 Akolkar R. Mathematical model of the dendritic growth during lithium electrodeposition. J Power Sources, 2013, 232: 23-28
[17]
32 Brissot C, Rosso M, Chazalviel J N, et al. Dendritic growth mechanisms in lithium/polymer cells. J Power Sources, 1999, 81-82: 925-929
[18]
34 Brissot C, Rosso M, Chazalviel J N, et al. Concentration measurements in lithium/polymer-electrolyte/lithium cells during cycling. J Power Sources, 2001, 94: 212-218
[19]
35 Rosso M, Gobron T, Brissot C, et al. Onset of dendritic growth in lithium/polymer cells. J Power Sources, 2001, 97-98: 804-806
[20]
38 Christie A M, Lisowska-Oleksiak A, Vincent C A. The lithium/polymer electrolyte interface. Electrochim Acta, 1995, 40: 2405-2411
[21]
39 Crowther O, West A C. Effect of electrolyte composition on lithium dendrite growth. J Electrochem Soc, 2008, 155: A806-A811
[22]
40 Wu B, Chen X, Zhang C, et al. Lithium-air and lithium-copper batteries based on a polymer stabilized interface between two immiscible electrolytic solutions (ITIES). New J Chem, 2012, 36: 2140-2145
[23]
41 Verbrugge M W, Koch B J. Microelectrode study of the lithium/propylene carbonate interface: Temperature and concentration dependence of physicochemical parameters. J Electrochem Soc, 1994, 141: 3053-3059
[24]
46 Ura H, Nishina T, Uchida I. Electrochemical measurements of single particles of Pd and LaNi5 with a microelectrode technique. J Electroanal Chem, 1995, 396: 169-173
55 Xiao L, Lu J T, Liu P F, et al. Proton diffusion determination and dual structure model for nickel hydroxide based on potential step measurements on single spherical beads. J Phys Chem B, 2005, 109: 3860-3867
[27]
59 Totir D A, Cahan B D, Scherson D A. Electrochemical characterization of lithiated transition metal oxide cathode particles in the absence of carbon, binders and other additives. Electrochim Acta, 1999, 45: 161-166
65 Yamamura S, Koshika H, Nishizawa M, et al. In situ conductivity measurements of LiMn2O4 thin films during lithium insertion/extraction by using interdigitated microarray electrodes. J Solid State Electrochem, 1998, 2: 211-215
68 Fernández J L, Walsh D A, Bard A J. Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy M-Co (M: Pd, Ag, Au). J Am Chem Soc, 2004, 127: 357-365
[33]
69 Chen S, Kucernak A. Electrocatalysis under conditions of high mass transport rate: Oxygen reduction on single submicrometer-sized Pt particles supported on carbon. J Phys Chem B, 2004, 108: 3262-3276
[34]
70 Wang Y, Zhou H. A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. J Power Sources, 2010, 195: 358-361
[35]
74 Nestor U, Wen H, Girma G, et al. Facilitated Li+ ion transfer across the water/1,2-dichloroethane interface by the solvation effect. Chem Commun, 2014, 50: 1015-1017
[36]
3 Lawrence N S, Jiang L, Jones T G J, et al. A thin-layer amperometric sensor for hydrogen sulfide: The use of microelectrodes to achieve a membrane-independent response for clark-type sensors. Anal Chem, 2003, 75: 2499-2503
[37]
4 Ruiz V, Malmberg H, Blanco C, et al. A study of faradaic phenomena in activated carbon by means of macroelectrodes and single particle electrodes. J Electroanal Chem, 2008, 618: 33-38
[38]
5 Bond A M, Henderson T L E, Mann D R, et al. A fast electron transfer rate for the oxidation of ferrocene in acetonitrile or dichloromethane at platinum disk ultramicroelectrodes. Anal Chem, 1988, 60: 1878-1882
[39]
6 Zhao X, Zhang D, Ren X, et al. Quasi-random assembled single particle electrode and instinct electrochemical performance of LiFePO4 in wide temperature scope. J Electroanal Chem, 2014, 712: 113-118
[40]
7 Kim H S, Itoh T, Nishizawa M, et al. Microvoltammetric study of electrochemical properties of a single spherical nickel hydroxide particle. Int J Hydrog Energy, 2002, 27: 295-300
[41]
13 Morgan D, Van der Ven A, Ceder G. Li conductivity in LixMPO4 (M=Mn,Fe,Co,Ni) olivine materials. Electrochem Solid-State Lett, 2004, 7: A30-A32
[42]
14 Munakata H, Takemura B, Saito T, et al. Evaluation of real performance of LiFePO4 by using single particle technique. J Power Sources, 2012, 217: 444-448
[43]
15 Dokko K, Nakata N, Suzuki Y, et al. High-rate lithium deintercalation from lithiated graphite single-particle electrode. J Phys Chem C, 2010, 114: 8646-8650
[44]
16 Christie A M, Vincent C A. The Li/Li+ couple in propylene carbonate electrolytes and poly(methyl methacrylate) gels. J Appl Electrochem, 1996, 26: 255-267
[45]
17 Christie L, Christie A M, Vincent C A. Measurement of the apparent lithium ion transference number and salt diffusion coefficient in solid polymer electrolytes. Electrochim Acta, 1999, 44: 2909-2913
20 Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications. New York: Wiley, 2001. 169-176
[49]
21 Shoup D, Szabo A. Chronoamperometric current at finite disk electrodes. J Electroanal Chem Interf Electrochem, 1982, 140: 237-245
[50]
28 Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc, 2005, 152: A396-A404
[51]
33 Brissot C, Rosso M, Chazalviel J N, et al. In situ study of dendritic growth in lithium/PEO-salt/lithium cells. Electrochim Acta, 1998, 43: 1569-1574
[52]
36 Wang X M, Iyoda M, Nishina T, et al. Microelectrode investigation of the lithium redox behavior in plasticized polymer electrolytes. J Power Sources, 1997, 68: 487-491
[53]
37 Kato Y, Ishihara T, Uchimoto Y, et al. Charge-transfer reaction rate of Li/Li+ couple in poly(ethylene glycol) dimethyl ether based electrolytes. J Phys Chem B, 2004, 108: 4794-4798
[54]
42 Cha C S, Li C M, Yang H X, et al. Powder microelectrodes. J Electroanal Chem, 1994, 368: 47-54
[55]
43 Come J, Taberna P L, Hamelet S, et al. Electrochemical kinetic study of LiFePO4 using cavity microelectrode. J Electrochem Soc, 2011, 158: A1090-A1093
[56]
44 Zhang C Z, Deng H, Zhao T, et al. Electrochemical behavior of Fe(VI)-Fe(III) system in concentrated NaOH solution. Ferrates, 2008, 985: 81-93
[57]
45 Bursell M, Bj?rnbom P. A method for studying microelectrodes by means of micromanipulators as applied to carbon agglomerates from oxygen reduction electrode catalyst. J Electrochem Soc, 1990, 137: 363-364
[58]
47 Kim H S, Nishizawa M, Uchida I. Single particle electrochemistry for hydrogen storage alloys, MmNi3.55Co0.75Mn0.4Al0.3. Electrochim Acta, 1999, 45: 483-488
[59]
48 Nishizawa M, Hashitani R, Itoh T, et al. Measurements of chemical diffusion coefficient of lithium ion in graphitized mesocarbon microbeads using a microelectrode. Electrochem Solid-State Lett, 1998, 1: 10-12
[60]
49 Dokko K, Mohamedi M, Fujita Y, et al. Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods. J Electrochem Soc, 2001, 148: A422-A426
[61]
50 Dokko K, Horikoshi S, Itoh T, et al. Microvoltammetry for cathode materials at elevated temperatures: Electrochemical stability of single particles. J Power Sources, 2000, 90: 109-115
[62]
51 Zhang D, Popov B N, White R E. Modeling lithium intercalation of a single spinel particle under potentiodynamic control. J Electrochem Soc, 2000, 147: 831-838
[63]
52 Jebaraj A J J, Scherson D A. Microparticle electrodes and single particle microbatteries: Electrochemical and in situ microraman spectroscopic studies. Acc Chem Res, 2013, 46: 1192-1205
[64]
53 Gao F, Yang Y, Liu J, et al. Single-particle investigation on the activation process of a hydrogen storage alloy. Int J Hydrog Energy, 2010, 35: 1273-1279
[65]
56 Uchida I, Mohamedi M, Dokko K, et al. Recent investigations on thin films and single particles of transition metal oxides for lithium batteries. J Power Sources, 2001, 97-98: 518-524
62 Chung K Y, Kim K B. Investigation of structural fatigue in spinel electrodes using in situ laser probe beam deflection technique. J Electrochem Soc, 2002, 149: A79-A85
[69]
63 Rao M, Liebenow C, Jayalakshmi M, et al. High-temperature combustion synthesis and electrochemical characterization of LiNiO2, LiCoO2 and LiMn2O4 for lithium-ion secondary batteries. J Solid State Electrochem, 2001, 5: 348-354
[70]
64 Zhang D, Popov B N, White R E. Electrochemical investigation of CrO2.65 doped LiMn2O4 as a cathode material for lithium-ion batteries. J Power Sources, 1998, 76: 81-90
[71]
66 Kato Y, Ishihara T, Ikuta H, et al. A high electrode-reaction rate for high-power-density lithium-ion secondary batteries by the addition of a lewis acid. Angew Chem Int Ed, 2004, 43: 1966-1969
[72]
71 Wang Y, He P, Zhou H. A lithium-air capacitor-battery based on a hybrid electrolyte. Energy Environ Sci, 2011, 4: 4994-4999
[73]
72 Li L, Zhao X, Manthiram A. A dual-electrolyte rechargeable Li-air battery with phosphate buffer catholyte. Electrochem Commun, 2012, 14: 78-81
[74]
73 Zhang D, Yan K, Wu F, et al. A high power density dual-electrolyte lithium-silver battery with Celgard? 2325 separator. Electrochim Acta, 2014, 116: 429-433