全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

异丙醇-丙酮-氢气化学热泵放热反应器内丙酮催化加氢:颗粒内热质传递的影响

DOI: 10.1360/csb2014-59-28-29-2826, PP. 2826-2832

Keywords: 颗粒内,丙酮加氢,扩散,化学热泵,计算流体力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

颗粒内传热传质对IAH-CHP固定床放热反应器性能具有重要影响.本文建立了管径和催化剂颗粒直径之比n=4的圆柱形放热反应器120°的三维局部模型,使用Fluent商业软件对模型内流场、组分和温度分布进行了模拟研究.重点研究了颗粒内传热传质特性对组分分布、温度分布、异丙醇产量及选择性的影响,并给出了最优的催化剂颗粒直径dp和催化剂内部微孔直径d0值.模拟结果表明,颗粒内温度分布较均匀,对反应影响不明显;大的dp值和小的d0值会显著增大催化剂颗粒内部的反应物浓度和反应速率梯度,降低催化剂的使用效率,降低异丙醇选择性.优化模拟结果说明,对于丙酮高温加氢放热反应,球形催化剂颗粒应选择催化剂颗粒直径1mm,微孔直径10nm.

References

[1]  1 Guo J F, Huai X L. The application of entransy theory in optimization design of isopropanol-acetone-hydrogen chemical heat pump. Energy, 2012, 43: 355-360
[2]  2 顾起鹤, 杨东华. 化学热泵中的可逆化学反应. 能源研究与信息, 1992, 8: 35-48
[3]  3 Bloomquist R G. Geothermal space heating. Geothermics, 2003, 32: 513-526
[4]  7 Klinsoda I, Piumsomboon P. Isopropanol-acetone-hydrogen chemical heat pump: A demonstration unit. Energy Convers Manag, 2007, 48: 1200-1207
[5]  8 Lerou Jan J, Ng Ka M. Chemical reaction engineering: A multiscale approach to a multiobjective task. Chem Eng Sci, 1996, 51: 1595-1614
[6]  9 Dixon A G, Nijemeisland M, Stitt H. Packed Tubular Reactor Modeling and Catalyst Design using Computational Fluid Dynamics, In: Guy B M, ed. Advances in Chemical Engineering. New York: Academic Press, 2006
[7]  10 Dixon A G, Boudreau J, Rocheleau A, et al. Flow, transport, and reaction interactions in shaped cylindrical particles for steam methane reforming. Ind Eng Chem Res, 2012, 51: 15839-15854
[8]  11 Chen W H, Lin M R, Jiang T L, et al. Modeling and simulation of hydrogen generation from high-temperature and low-temperature water gas shift reactions. Int J Hydrogen Energy, 2008, 33: 6644-6656
[9]  12 Chen W H, Jheng J G. Characterization of water gas shift reaction in association with carbon dioxide sequestration. J Power Sources, 2007, 172: 368-375
[10]  16 Dixon A G, Ertan T M, Stitt H, et al. 3D CFD simulations of steam reforming with resolved intraparticle reaction and gradients. Chem Eng Sci, 2007, 62: 4963-4966
[11]  17 Cheng S H, Chang H, Chen Y H, et al. Computational fluid dynamics-based multiobjective optimization for catalyst design. Ind Eng Chem Res, 2010, 49: 11079-11086
[12]  18 Gao X, Zhu Y P, Luo Z H. CFD modeling of gas flow in porous medium and catalytic coupling reaction from carbon monoxide to diethyl oxalate in fixed-bed reactors. Chem Eng Sci, 2011, 66: 6028-6038
[13]  14 Dixon A G, Taskin M E, Nijemeisland M, et al. CFD method to couple three-dimensional transport and reaction inside catalyst particles to the fixed bed flow field. Ind Eng Chem Res, 2010, 49: 9012-9025
[14]  15 Dixon A G, Nijemeisland M, Stitt H. CFD simulation of reaction and heat transfer near the wall of a fixed bed. Int J Chem React Eng,2003, 1: A22
[15]  16 Dixon A G, Ertan T M, Stitt H, et al. 3D CFD simulations of steam reforming with resolved intraparticle reaction and gradients. Chem Eng Sci, 2007, 62: 4963-4966
[16]  17 Cheng S H, Chang H, Chen Y H, et al. Computational fluid dynamics-based multiobjective optimization for catalyst design. Ind Eng Chem Res, 2010, 49: 11079-11086
[17]  4 Ozgener L, Hepbasli A, Dincer I. Energy and exergy analysis of geothermal district heating systems: An application. Build Environ, 2005, 40: 1309-1322
[18]  5 Faninger G. Combined solar-biomass district heating in Austria. Sol Energy, 2000, 69: 425-435
[19]  6 Wongsuwan W, Kumar S, Neveu P, et al. A review of chemical heat pump technology and applications. Appl Therm Eng, 2001, 21: 1489-1519
[20]  13 Nijemeisland M, Dixon A G. CFD study of fluid flow and wall heat transfer in a fixed bed of spheres. AIChE J, 2004, 50: 906-921
[21]  14 Dixon A G, Taskin M E, Nijemeisland M, et al. CFD method to couple three-dimensional transport and reaction inside catalyst particles to the fixed bed flow field. Ind Eng Chem Res, 2010, 49: 9012-9025
[22]  15 Dixon A G, Nijemeisland M, Stitt H. CFD simulation of reaction and heat transfer near the wall of a fixed bed. Int J Chem React Eng, 2003, 1: A22
[23]  19 龙回龙, 许明杰, 于东华, 等. 基于FLUENT 水气变换反应在多孔介质内的两温度模型. 计算机与应用化学, 2012, 29: 981-985
[24]  20 Duan Y J, Xu M, Huai X L. High temperature catalytic hydrogenation of acetone over raney Ni for chemical heat pump. J Therm Sci, 2014, 23: 85-90
[25]  21 郭锴, 唐小恒, 周绪美. 化学反应工程. 北京: 化学工业出版社, 2000. 184, Jiang T L, et al. Modeling and simulation of hydrogen generation from high-temperature and low-temperature water gas shift reactions. Int J Hydrogen Energy, 2008, 33: 6644-6656
[26]  12 Chen W H, Jheng J G. Characterization of water gas shift reaction in association with carbon dioxide sequestration. J Power Sources, 2007,172: 368-375
[27]  13 Nijemeisland M, Dixon A G. CFD study of fluid flow and wall heat transfer in a fixed bed of spheres. AIChE J, 2004, 50: 906-921
[28]  18 Gao X, Zhu Y P, Luo Z H. CFD modeling of gas flow in porous medium and catalytic coupling reaction from carbon monoxide to diethyl oxalate in fixed-bed reactors. Chem Eng Sci, 2011, 66: 6028-6038
[29]  19 龙回龙, 许明杰, 于东华, 等. 基于FLUENT 水气变换反应在多孔介质内的两温度模型. 计算机与应用化学, 2012, 29: 981-985
[30]  20 Duan Y J, Xu M, Huai X L. High temperature catalytic hydrogenation of acetone over raney Ni for chemical heat pump. J Therm Sci,2014, 23: 85-90
[31]  21 郭锴, 唐小恒, 周绪美. 化学反应工程. 北京: 化学工业出版社, 2000. 184 ?

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133