全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

一种适用于现代褐煤干燥电站的新型低温热集成干燥系统

DOI: 10.1360/csb2014-59-28-29-2817, PP. 2817-2825

Keywords: 褐煤干燥,燃煤电站,系统集成,热力学分析,经济性分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

褐煤预干燥过程在褐煤电站中有着十分重要的作用.具有高效率、高成本收益的内热源式蒸汽循环流化床干燥是最有前景的干燥方法之一.本文在深入分析了传统褐煤干燥电站的基础上,提出了一种新型低温热集成褐煤干燥系统.在新型褐煤干燥电站中,低品位蒸汽用来加热冷空气,置换出高品位烟气加热给水与凝结水,从而节省汽轮机高压缸与中压缸的抽汽.分析结果表明,新型低温热集成褐煤干燥系统能够使电站效率提高3.6个百分点,降低发电成本1.83美元/(MWh),节能效果与经济收益高于传统褐煤干燥电站,将为下一代褐煤电站提供一种高效的干燥设备与热力系统集成方法.

References

[1]  1 Thielemann T, Schmidt S, Peter Gerling J. Lignite and hard coal: Energy suppliers for world needs until the year 2100—An outlook. Int J Coal Geol, 2007, 72: 1-14
[2]  11 Liu M, Yan J J, Chong D T, et al. Thermodynamic analysis of pre-drying methods for pre-dried lignite-fired power plant. Energy, 2013, 49: 107-118
[3]  12 Kakaras E, Koumanakos A, Doukelis A, et al. Ultra-supercritical power plant fired with low quality Greek lignite. International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2007
[4]  16 Wang L G, Yang Y P, Dong C Q, et al. Parametric optimization of supercritical coal-fired power plants by MINLP and differential evolution original research article. Energ Convers Manage, 2014, 85: 828-838
[5]  17 阎维平, 马凯, 李春启, 等. 褐煤干燥对电厂经济性的影响. 中国电力, 2010, 43: 35-37
[6]  18 Xu G, Wu Y, Yang Y P, et al. A novel integrated system with power generation, CO2 capture, and heat supply. Appl Therm Eng, 2013, 61: 110-120
[7]  19 Ma Y F, Yuan Y C, Jin J, et al. An environment friendly and efficient lignite-fired power generation process based on a boiler with an open pulverizing system and the recovery of water from mill-exhaust. Energy, 2013, 59: 105-115
[8]  22 Shi X J, Che D F, Brian A, et al. An investigation of the performance of compact heat exchanger for latent heat recovery from exhaust flue gases. Int J Heat Mass Tran, 2011, 54: 606-615
[9]  23 Smith R. Chemical Process Design and Integration. 2nd Ed. Chichester: John Wiley and Sons, 2005
[10]  27 Peters M S, Timmerhaus K D, West R E, et al. Plant Design and Economics for Chemical Engineers. New York: Mcgraw-Hill, 1968
[11]  29 Guo Z H ,Wang Q H, Fang M X, et al. Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant. Appl Energy, 2014, 113: 1301-1314
[12]  2 尹立群. 我国褐煤资源极其利用前景. 煤炭科学技术, 2004, 32: 12-14
[13]  3 Atsonios K, Violidakis I, Agraniotis M. Thermodynamic analysis and comparison of retrofitting pre-drying concepts at existing lignite power plants. Appl Therm Eng, doi: 10.1016/j.applthermaleng.2013.11.007
[14]  4 Choicharoen K, Devahastin S, Soponronnarit S. Comparative evaluation of performance and energy consumption of hot air and super-heated steam impinging stream dryers for high-moisture particulate materials. Appl Therm Eng, 2011, 31: 3444-3452
[15]  5 Favas G, Jackson W R. Hydrothermal dewatering of lower rank coals.1. Effects of process conditions on the properties of dried product. Fuel, 2003, 82: 53-77
[16]  6 Bergins C. Kinetics and mechanism during mechanical/thermal dewatering of lignite. Fuel, 2003, 82: 355-364
[17]  7 Pawlac-Kruczek H, Lichota J, Plutecki Z. Efficiency of brown coal dryer depending on drying method. In: 36th International Technical Conference on Clean Coal & Fuel Systems, 2011 Florida USA. 1023-1031
[18]  8 Porsche T, Thannhaeuser L, Hoehne O, et al. First test results from the lignite pilot plant using steam fluidized bed drying. In: German Combustion and Flame Conference, Düsseldorf, German, 2009 (in German)
[19]  9 Ness M, Bullinger C. Pre-Drying the Lignite in GRE's Coal Creek Station. www.netl.doe.gov
[20]  10 Kakaras E, Ahladas P, Syrmopoulos S. Computer simulation studies for the integration of an external dryer into a Greek lignite-fired power plant. Fuel, 2002, 81: 583-593
[21]  13 Agraniotis M, Koumanakos A, Doukelis A, et al. Investigation of technical and economic aspects of pre-dried lignite utilisation in a modern lignite power plant towards zero CO2 emissions. Energy, 2012, 45: 134-141
[22]  14 Westerlund L, Hermansson R, Fagerstrom J. Flue gas purification and heat recovery: A biomass fired boiler supplied with an open ab-sorption system. Appl Energy, 2012, 96: 444-450
[23]  15 Wang L G, Yang Y P, Dong C Q, et al. Multi-objective optimization of coal-fired power plants using differential Evolution. Appl Energy, 2014, 15: 254-264
[24]  20 Espatolero S, Cortes C, Romeo L M. Optimization of boiler cold-end and integration with the steam cycle in supercritical units. Appl Energy, 2010, 87: 1651-1660
[25]  21 吴晓华. 工业锅炉设计计算标准方法. 北京: 中国标准出版社, 2003
[26]  24 赵之军, 冯伟忠, 张玲, 等. 电站锅炉排烟余热回收的理论分析与工程实践. 动力工程, 2009, 29: 994-997
[27]  25 中国电力工程顾问集团公司. 火电厂工程限额设计参考造价指标(2009年水平). 北京: 中国电力出版社, 2011
[28]  26 傅秦升. 能量系统的热力学分析方法. 西安: 西安交通大学出版社, 2005
[29]  28 Bejan A, Tsatsaronis G, Moran M. Thermal Design and Optimization. Hoboken: John Wiley & Sons, 1996
[30]  30 Kreutz T, Williams R, Consonni S, et al. Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part B: Economic analysis. Int J Hydrogen Energy, 2005, 30: 769-784

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133