全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

有机朗肯循环控制系统的设定值优化

DOI: 10.1360/csb2014-59-28-29-2792, PP. 2792-2798

Keywords: 有机朗肯循环,设定值优化,能量转换效率,遗传算法,最小二乘支持向量机

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种优化有机朗肯循环(organicRankinecycle,ORC)控制系统设定值的方法.由于ORC系统中存在扰动及工况点的变化,有必要根据运行工况实时调整控制回路设定值,以提高ORC系统的能量转换效率.首先,回顾ORC系统性能分析及优化等相关文献,探讨了ORC控制系统设定值优化问题;然后采用基于遗传算法的最小二乘支持向量机(GeneticAlgorithm-LeastSquaresSupportVectorMachine,GA-LSSVM),确定了ORC过程控制系统的最优设定值.仿真结果表明当ORC系统的工况发生变化时,由GA-LSSVM算法可以快速确定ORC控制系统的最优设定值.

References

[1]  3 Liu B T, Chien K H, Wang C C. Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy, 2004, 29: 1207-1217
[2]  6 Dai Y P, Wang J F, Gao L. Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat re-covery. Energy Convers Manage, 2009, 50: 576-582
[3]  9 Roy J P, Mishra M K, Misra A. Parametric optimization and performance analysis of a waste heat recovery system using organic Rankine cycle. Energy, 2010, 35: 5049-5062
[4]  10 Hung T C. Waste heat recovery of organic Rankine cycle using dry fluids. Energy Convers Manage, 2001, 42: 539-553
[5]  11 Sun J, Li W H. Operation optimization of an organic Rankine cycle (ORC) heat recovery power plant. Appl Therm Eng, 2011, 31: 2032-2041
[6]  12 Quoilin S, Aumann R, Grill A, et al. Dynamic modeling and optimal control strategy of waste heat recovery organic Rankine cycles. Appl Energy, 2011, 88: 2183-2190
[7]  13 Zhang J H, Zhou Y L, Wang R, et al. Modeling and constrained multivariable predictive control for ORC (organic Rankine cycle) based waste heat energy conversion systems. Energy, 2014, 66: 128-138
[8]  14 Mustaffa Z, Yusof Y, Kamaruddin S S. Enhanced artificial bee colony for training least squares support vector machines in commodity price forecasting. J Comput Sci, 2013, 5: 196-205
[9]  15 Suykens J A K, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett, 1999, 9: 293-300
[10]  16 Wu C H, Tzeng G H, Lin R H. A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Expert Syst Appl, 2009, 36: 4725-4735
[11]  17 Yang Z, Gu X S, Liang X Y, et al. Genetic algorithm-least squares support vector regression based predicting and optimizing model on carbon fiber composite integrated conductivity. Mater Des, 2010, 31: 1042-1049
[12]  1 Tchanche B F, Lambrinos G, Frangoudakis A, et al. Low-grade heat conversion into power using organic Rankine cycles—A review of various applications. Renew Sust Energ Rev, 2011, 15: 3963-3979
[13]  2 Hung T C, Shai T Y, Wang S K. A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy, 1997, 22: 661-667
[14]  4 Mago P J, Chamra L M, Srinivasa K, et al. An examination of regenerative organic Rankine cycles using dry fluids. Appl Therm Eng, 2008, 28: 998-1007
[15]  5 Quoilin S, Declaye S, Tchanche B F, et al. Thermo-economic optimization of waste heat recovery organic Rankine cycles. Appl Therm Eng, 2011, 31: 2885-2893
[16]  7 Roy J P, Misra A. Parametric optimization and performance analysis of a regenerative organic Rankine cycle using R-123 for waste heat recovery. Energy, 2012, 39: 227-235
[17]  8 Roy J P, Mishra M K, Misra A. Parametric optimization and performance analysis of a regenerative organic rankine cycle using low-grade waste heat for power generation. Int J Green Energy, 2011, 8: 173-196

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133