全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

纳米结构氧化铜修饰的石英晶体微天平用于氰化氢气体传感的研究进展

DOI: 10.1360/N972014-00169, PP. 3144-3155

Keywords: 石英晶体微天平,传感器,纳米材料,氧化铜,氰化氢

Full-Text   Cite this paper   Add to My Lib

Abstract:

综述了有关氧化铜纳米材料修饰的石英晶体微天平(quartzcrystalmicrobalance,QCM)传感器的发现及其对氰化氢传感性能的系列研究工作.首先简要介绍了剧毒气体氰化氢及其现有检测方法和石英晶体微天平.然后讨论了不同结构和形貌的氧化铜纳米材料的合成和表征.在此基础上介绍了以氧化铜纳米材料为敏感膜,以高灵敏度QCM为检测平台的传感器的制备及其对氰化氢独特而优异的传感性能.进一步探讨了氧化铜纳米材料修饰的QCM传感器对氰化氢的传感机理.最后,就该领域研究存在的问题及未来的研究和应用方向进行了讨论、总结和展望.

References

[1]  1 Ballantyne B, Bismuth C, Hall A H. Cyanides: Chemical Warfare Agents and Potential Terrorist threats. New York: John Wiley & Sons, 2007. 495-542
[2]  2 Patnaik P. Cyanides, Inorganic. New York: John Wiley & Sons, 2006. 317-335
[3]  7 Sweileh J A. Study of equilibria in cyanide systems by gas-diffusion measurement of hydrogen cyanide. Anal Chim Acta, 1996, 336: 131-140
[4]  8 Ikebukuro K, Shimomura M, Onuma N, et al. A novel biosensor system for cyanide based on a chemiluminescence reaction. Anal Chim Acta, 1996, 329: 111-116
[5]  9 Xu X, Cang H, Li C, et al. Quartz crystal microbalance sensor array for the detection of volatile organic compounds. Talanta, 2009, 78: 711-716
[6]  10 Lee S, Takahara N, Korposh S, et al. Nanoassembled thin film gas sensors. III. Sensitive detection of amine odors using TiO2/poly(acrylic acid) ultrathin film quartz crystal microbalance sensors. Anal Chem, 2010, 82: 2228-2236
[7]  11 Erol A, Okur S, Yagmurcukardes N, et al. Humidity-sensing properties of a ZnO nanowire film as measured with a QCM. Sens Actuators B: Chem, 2011, 152: 115-120
[8]  12 Rehman A, Hamilton A, Chung A, et al. Differential solute gas response in ionic-liquid-based QCM arrays: Elucidating design factors responsible for discriminative explosive gas sensing. Anal Chem, 2011, 83: 7823-7833
[9]  14 Zhang Z, Fan J, Yu J, et al. New poly(N,N-dimethylaminoethyl methacrylate)/polyvinyl alcohol copolymer coated QCM sensor for interaction with CWA simulants. ACS Appl Mater Interfaces, 2012, 4: 944-949
[10]  17 Krim J. QCM tribology studies of thin adsorbed films. Nano Today, 2007, 2: 38-43
[11]  18 Hao R, Wang D, Zhang X, et al. Rapid detection of Bacillus anthracis using monoclonal antibody functionalized QCM sensor. Biosens Bioelectron, 2009, 24: 1330-1335
[12]  19 Ji Q, Yoon S B, Hill J P, et al. Layer-by-layer films of dual-pore carbon capsules with designable selectivity of gas adsorption. J Am Chem Soc, 2009, 131: 4220-4221
[13]  20 Hagleitner C, Hierlemann A, Lange D, et al. Smart single-chip gas sensor microsystem. Nature, 2001, 414: 293-296
[14]  21 Sauerbrey G. Verwendung von schwingquarzen zur w?gung dünner schichten und zur mikrow?gung. Zeitschrift Für Physik, 1959, 155: 206-222
[15]  22 Waller M R, Townsend T K, Zhao J, et al. Single-crystal tungsten oxide nanosheets: Photochemical water oxidation in the quantum confinement regime. Chem Mater, 2012, 24: 698-704
[16]  23 Tu?ek J i, Zbo?il R, Namai A, et al. ε-Fe2O3: An advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling. Chem Mater, 2010, 22: 6483-6505
[17]  24 Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev, 2010, 110: 2573-2574
[18]  28 Yang H, Lu Q, Gao F, et al. One-step synthesis of highly ordered mesoporous silica monoliths with metal oxide nanocrystals in their channels. Adv Funct Mater, 2005, 15: 1377-1384
[19]  29 Zhou H, Wong S S. A facile and mild synthesis of 1-D ZnO, CuO, and α-Fe2O3 nanostructures and nanostructured arrays. ACS Nano, 2008, 2: 944-958
[20]  30 Li Y, Wang J, Zhang Y, et al. Facile controlled synthesis and growth mechanisms of flower-like and tubular MnO2 nanostructures by microwave-assisted hydrothermal method. J Colloid Interface Sci, 2012, 369: 123-128
[21]  31 Andio M A, Browning P N, Morris P A, et al. Comparison of gas sensor performance of SnO2 nano-structures on microhotplate platforms. Sens Actuators B: Chem, 2012, 165: 13-18
[22]  32 Kim J, Yong K. Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing. J Phys Chem C, 2011, 115: 7218-7224
[23]  33 Nguyen H, El-Safty S A. Meso and macroporous Co3O4 nanorods for effective VOC gas sensors. J Phys Chem C, 2011, 115: 8466-8474
[24]  34 Chen J, Wang K, Hartman L, et al. H2S detection by vertically aligned CuO nanowire array sensors. J Phys Chem C, 2008, 112: 16017-16021
[25]  35 Zhang Q, Zhang K, Xu D, et al. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci, 2014, 60: 208-337
[26]  36 Park J C, Kim J, Kwon H, et al. Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv Mater, 2009, 21: 803-807
[27]  37 Umar A, Rahman M M, Al-Hajry A, et al. Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets. Electrochem Commun, 2009, 11: 278-281
[28]  38 Outokesh M, Hosseinpour M, Ahmadi S J, et al. Hydrothermal synthesis of CuO nanoparticles: Study on effects of operational conditions on yield, purity, and size of the nanoparticles. Ind Eng Chem Res, 2011, 50: 3540-3554
[29]  39 Feng Y, Zheng X. Plasma-enhanced catalytic CuO nanowires for CO oxidation. Nano Lett, 2010, 10: 4762-4766
[30]  40 Shrestha K M, Sorensen C M, Klabunde K J. Synthesis of CuO nanorods, reduction of CuO into Cu nanorods, and diffuse reflectance measurements of CuO and Cu nanomaterials in the near infrared region. J Phys Chem C, 2010, 114: 14368-14376
[31]  41 Cheng Z, Xu J, Zhong H, et al. Hydrogen peroxide-assisted hydrothermal synthesis of hierarchical CuO flower-like nanostructures. Mater Lett, 2011, 65: 2047-2050
[32]  42 Qin Y, Zhang F, Chen Y, et al. Hierarchically porous CuO hollow spheres fabricated via a one-pot template-free method for high-performance gas sensors. J Phys Chem C, 2012, 116: 11994-12000
[33]  43 Liu B, Zeng H C. Mesoscale organization of CuO nanoribbons: Formation of "Dandelions". J Am Chem Soc, 2004, 126: 8124-8125
[34]  44 Zhu G, Xu H, Xiao Y, et al. Facile fabrication and enhanced sensing properties of hierarchically porous CuO architectures. ACS Appl Mater Interfaces, 2012, 4: 744-751
[35]  45 Zhong M L, Zeng D C, Liu Z W, et al. Synthesis, growth mechanism and gas-sensing properties of large-scale CuO nanowires. Acta Mater, 2010, 58: 5926-5932
[36]  46 Zou G, Li H, Zhang D, et al. Well-aligned arrays of CuO nanoplatelets. J Phys Chem B, 2006, 110: 1632-1637
[37]  47 Zhang J, Liu J, Peng Q, et al. Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors. Chem Mater, 2006, 18: 867-871
[38]  48 Lai X, Li X, Geng W, et al. Ordered mesoporous copper oxide with crystalline walls. Angew Chem Int Ed, 2007, 46: 738-741
[39]  49 Wang X, Xi G, Xiong S, et al. Solution-phase synthesis of single-crystal CuO nanoribbons and nanorings. Cryst Growth Des, 2007, 7: 930-934
[40]  50 Xiao H M, Fu S Y, Zhu L P, et al. Controlled synthesis and characterization of CuO nanostructures through a facile hydrothermal route in the presence of sodium citrate. Eur J Inorg Chem, 2007, 2007: 1966-1971
[41]  51 Zhou Y, Kamiya S, Minamikawa H, et al. Aligned nanocables: Controlled sheathing of CuO nanowires by a self-assembled tubular glycolipid. Adv Mater, 2007, 19: 4194-4197
[42]  52 Gao S, Yang S, Shu J, et al. Green fabrication of hierarchical CuO hollow micro/nanostructures and enhanced performance as electrode materials for lithium-ion batteries. J Phys Chem C, 2008, 112: 19324-19328
[43]  55 Yang M, He J, Hu X, et al. Copper oxide nanoparticle sensors for hydrogen cyanide detection: unprecedented selectivity and sensitivity. Sens Actuators B: Chem, 2011, 155: 692-698
[44]  56 Yang M, He J. Fine tuning of the morphology of copper oxide nanostructures and their application in ambient degradation of methylene blue. J Colloid Interface Sci, 2011, 355: 15-22
[45]  57 Yang M, He J, Hu X, et al. CuO nanostructures as quartz crystal microbalance sensing layers for detection of trace hydrogen cyanide gas. Environ Sci Technol, 2011, 45: 6088-6094
[46]  58 Yang M, He J, Hu X, et al. Synthesis of nanostructured copper oxide via oxalate precursors and their sensing properties for hydrogen cyanide gas. Analyst, 2013, 138: 1758-1763
[47]  59 Yang M, He J. Tailoring the structure of metal oxide nanostructures towards enhanced sensing properties for environmental applications. J Colloid Interface Sci, 2012, 368: 41-48
[48]  62 Xu Y, Chen D, Jiao X, et al. Nanosized Cu2O/PEG400 composite hollow spheres with mesoporous shells. J Phys Chem C, 2007, 111: 16284-16289
[49]  65 Romann J, Valmalette J C, Chevallier V, et al. Surface interactions between molecules and nanocrystals in copper oxalate nanostructures. J Phys Chem C, 2010, 114: 10677-10682
[50]  66 Ranjan R, Vaidya S, Thaplyal P, et al. Controlling the size, morphology, and aspect ratio of nanostructures using reverse micelles: A case study of copper oxalate monohydrate. Langmuir, 2009, 25: 6469-6475
[51]  3 Porter T L, Vail T L, Eastman M P, et al. A solid-state sensor platform for the detection of hydrogen cyanide gas. Sens Actuators B: Chem, 2007, 123: 313-317
[52]  4 Toth K, Pungor E. Determination of cyanides with ion-selective membrane electrodes. Anal Chim Acta, 1970, 51: 221-230
[53]  5 Meyer R E, Lantz P M. Reactions of the cyanide ion with the packed-bed silver electrode: analysis for the cyanide ion. J Electroanal Chem, 1975, 61: 155-163
[54]  6 Langmaier J, Janata J. Sensitive layer for electrochemical detection of hydrogen cyanide. Anal Chem, 1992, 64: 523-527
[55]  13 Vaiyapuri R, Greenland B W, Elliott J M, et al. Pyrene-modified quartz crystal microbalance for the detection of polynitroaromatic compounds. Anal Chem, 2011, 83: 6208-6214
[56]  15 Wang J, Zhu Z, Ma H. Label-free real-time detection of DNA methylation based on quartz crystal microbalance measurement. Anal Chem, 2013, 85: 2096-2101
[57]  16 Marx K A. Quartz crystal microbalance: A useful tool for studying thin polymer films and complex biomolecular systems at the solution surface interface. Biomacromolecules, 2003, 4: 1099-1120
[58]  25 Kuo C H, Huang M H. Morphologically controlled synthesis of Cu2O nanocrystals and their properties. Nano Today, 2010, 5: 106-116
[59]  26 Chen X, Mao S S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem Rev, 2007, 107: 2891-2959
[60]  27 Reed J, Ceder G. Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem Rev, 2004, 104: 4513-4534
[61]  53 Li Y, Liang J, Tao Z, et al. CuO particles and plates: Synthesis and gas-sensor application. Mater Res Bull, 2008, 43: 2380-2385
[62]  54 Liu J, Huang X, Li Y, et al. Formation of hierarchical CuO microcabbages as stable bionic superhydrophobic materials via a room-temperature solution-immersion process. Solid State Sci, 2008, 10: 1568-1576
[63]  60 Yu H, Yu J, Liu S, et al. Template-free hydrothermal synthesis of CuO/Cu2O composite hollow microspheres. Chem Mater, 2007, 19: 4327-4334
[64]  61 Xu Y, Jiao X, Chen D. PEG-assisted preparation of single-crystalline Cu2O hollow nanocubes. J Phys Chem C, 2008, 112: 16769-16773
[65]  63 Li S, Zhang H, Ji Y, et al. CuO nanodendrites synthesized by a novel hydrothermal route. Nanotechnology, 2004, 15: 1428-1432
[66]  64 Romann J, Chevallier V, Merlen A, et al. Self-organized assembly of copper oxalate nanocrystals. J Phys Chem C, 2009, 113: 5068-5074

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133