1 Ballantyne B, Bismuth C, Hall A H. Cyanides: Chemical Warfare Agents and Potential Terrorist threats. New York: John Wiley & Sons, 2007. 495-542
[2]
2 Patnaik P. Cyanides, Inorganic. New York: John Wiley & Sons, 2006. 317-335
[3]
7 Sweileh J A. Study of equilibria in cyanide systems by gas-diffusion measurement of hydrogen cyanide. Anal Chim Acta, 1996, 336: 131-140
[4]
8 Ikebukuro K, Shimomura M, Onuma N, et al. A novel biosensor system for cyanide based on a chemiluminescence reaction. Anal Chim Acta, 1996, 329: 111-116
[5]
9 Xu X, Cang H, Li C, et al. Quartz crystal microbalance sensor array for the detection of volatile organic compounds. Talanta, 2009, 78: 711-716
[6]
10 Lee S, Takahara N, Korposh S, et al. Nanoassembled thin film gas sensors. III. Sensitive detection of amine odors using TiO2/poly(acrylic acid) ultrathin film quartz crystal microbalance sensors. Anal Chem, 2010, 82: 2228-2236
[7]
11 Erol A, Okur S, Yagmurcukardes N, et al. Humidity-sensing properties of a ZnO nanowire film as measured with a QCM. Sens Actuators B: Chem, 2011, 152: 115-120
[8]
12 Rehman A, Hamilton A, Chung A, et al. Differential solute gas response in ionic-liquid-based QCM arrays: Elucidating design factors responsible for discriminative explosive gas sensing. Anal Chem, 2011, 83: 7823-7833
[9]
14 Zhang Z, Fan J, Yu J, et al. New poly(N,N-dimethylaminoethyl methacrylate)/polyvinyl alcohol copolymer coated QCM sensor for interaction with CWA simulants. ACS Appl Mater Interfaces, 2012, 4: 944-949
[10]
17 Krim J. QCM tribology studies of thin adsorbed films. Nano Today, 2007, 2: 38-43
[11]
18 Hao R, Wang D, Zhang X, et al. Rapid detection of Bacillus anthracis using monoclonal antibody functionalized QCM sensor. Biosens Bioelectron, 2009, 24: 1330-1335
[12]
19 Ji Q, Yoon S B, Hill J P, et al. Layer-by-layer films of dual-pore carbon capsules with designable selectivity of gas adsorption. J Am Chem Soc, 2009, 131: 4220-4221
[13]
20 Hagleitner C, Hierlemann A, Lange D, et al. Smart single-chip gas sensor microsystem. Nature, 2001, 414: 293-296
[14]
21 Sauerbrey G. Verwendung von schwingquarzen zur w?gung dünner schichten und zur mikrow?gung. Zeitschrift Für Physik, 1959, 155: 206-222
[15]
22 Waller M R, Townsend T K, Zhao J, et al. Single-crystal tungsten oxide nanosheets: Photochemical water oxidation in the quantum confinement regime. Chem Mater, 2012, 24: 698-704
[16]
23 Tu?ek J i, Zbo?il R, Namai A, et al. ε-Fe2O3: An advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling. Chem Mater, 2010, 22: 6483-6505
[17]
24 Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev, 2010, 110: 2573-2574
[18]
28 Yang H, Lu Q, Gao F, et al. One-step synthesis of highly ordered mesoporous silica monoliths with metal oxide nanocrystals in their channels. Adv Funct Mater, 2005, 15: 1377-1384
[19]
29 Zhou H, Wong S S. A facile and mild synthesis of 1-D ZnO, CuO, and α-Fe2O3 nanostructures and nanostructured arrays. ACS Nano, 2008, 2: 944-958
[20]
30 Li Y, Wang J, Zhang Y, et al. Facile controlled synthesis and growth mechanisms of flower-like and tubular MnO2 nanostructures by microwave-assisted hydrothermal method. J Colloid Interface Sci, 2012, 369: 123-128
[21]
31 Andio M A, Browning P N, Morris P A, et al. Comparison of gas sensor performance of SnO2 nano-structures on microhotplate platforms. Sens Actuators B: Chem, 2012, 165: 13-18
[22]
32 Kim J, Yong K. Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing. J Phys Chem C, 2011, 115: 7218-7224
[23]
33 Nguyen H, El-Safty S A. Meso and macroporous Co3O4 nanorods for effective VOC gas sensors. J Phys Chem C, 2011, 115: 8466-8474
[24]
34 Chen J, Wang K, Hartman L, et al. H2S detection by vertically aligned CuO nanowire array sensors. J Phys Chem C, 2008, 112: 16017-16021
[25]
35 Zhang Q, Zhang K, Xu D, et al. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci, 2014, 60: 208-337
[26]
36 Park J C, Kim J, Kwon H, et al. Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv Mater, 2009, 21: 803-807
[27]
37 Umar A, Rahman M M, Al-Hajry A, et al. Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets. Electrochem Commun, 2009, 11: 278-281
[28]
38 Outokesh M, Hosseinpour M, Ahmadi S J, et al. Hydrothermal synthesis of CuO nanoparticles: Study on effects of operational conditions on yield, purity, and size of the nanoparticles. Ind Eng Chem Res, 2011, 50: 3540-3554
[29]
39 Feng Y, Zheng X. Plasma-enhanced catalytic CuO nanowires for CO oxidation. Nano Lett, 2010, 10: 4762-4766
[30]
40 Shrestha K M, Sorensen C M, Klabunde K J. Synthesis of CuO nanorods, reduction of CuO into Cu nanorods, and diffuse reflectance measurements of CuO and Cu nanomaterials in the near infrared region. J Phys Chem C, 2010, 114: 14368-14376
[31]
41 Cheng Z, Xu J, Zhong H, et al. Hydrogen peroxide-assisted hydrothermal synthesis of hierarchical CuO flower-like nanostructures. Mater Lett, 2011, 65: 2047-2050
[32]
42 Qin Y, Zhang F, Chen Y, et al. Hierarchically porous CuO hollow spheres fabricated via a one-pot template-free method for high-performance gas sensors. J Phys Chem C, 2012, 116: 11994-12000
[33]
43 Liu B, Zeng H C. Mesoscale organization of CuO nanoribbons: Formation of "Dandelions". J Am Chem Soc, 2004, 126: 8124-8125
[34]
44 Zhu G, Xu H, Xiao Y, et al. Facile fabrication and enhanced sensing properties of hierarchically porous CuO architectures. ACS Appl Mater Interfaces, 2012, 4: 744-751
[35]
45 Zhong M L, Zeng D C, Liu Z W, et al. Synthesis, growth mechanism and gas-sensing properties of large-scale CuO nanowires. Acta Mater, 2010, 58: 5926-5932
[36]
46 Zou G, Li H, Zhang D, et al. Well-aligned arrays of CuO nanoplatelets. J Phys Chem B, 2006, 110: 1632-1637
[37]
47 Zhang J, Liu J, Peng Q, et al. Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors. Chem Mater, 2006, 18: 867-871
[38]
48 Lai X, Li X, Geng W, et al. Ordered mesoporous copper oxide with crystalline walls. Angew Chem Int Ed, 2007, 46: 738-741
[39]
49 Wang X, Xi G, Xiong S, et al. Solution-phase synthesis of single-crystal CuO nanoribbons and nanorings. Cryst Growth Des, 2007, 7: 930-934
[40]
50 Xiao H M, Fu S Y, Zhu L P, et al. Controlled synthesis and characterization of CuO nanostructures through a facile hydrothermal route in the presence of sodium citrate. Eur J Inorg Chem, 2007, 2007: 1966-1971
[41]
51 Zhou Y, Kamiya S, Minamikawa H, et al. Aligned nanocables: Controlled sheathing of CuO nanowires by a self-assembled tubular glycolipid. Adv Mater, 2007, 19: 4194-4197
[42]
52 Gao S, Yang S, Shu J, et al. Green fabrication of hierarchical CuO hollow micro/nanostructures and enhanced performance as electrode materials for lithium-ion batteries. J Phys Chem C, 2008, 112: 19324-19328
[43]
55 Yang M, He J, Hu X, et al. Copper oxide nanoparticle sensors for hydrogen cyanide detection: unprecedented selectivity and sensitivity. Sens Actuators B: Chem, 2011, 155: 692-698
[44]
56 Yang M, He J. Fine tuning of the morphology of copper oxide nanostructures and their application in ambient degradation of methylene blue. J Colloid Interface Sci, 2011, 355: 15-22
[45]
57 Yang M, He J, Hu X, et al. CuO nanostructures as quartz crystal microbalance sensing layers for detection of trace hydrogen cyanide gas. Environ Sci Technol, 2011, 45: 6088-6094
[46]
58 Yang M, He J, Hu X, et al. Synthesis of nanostructured copper oxide via oxalate precursors and their sensing properties for hydrogen cyanide gas. Analyst, 2013, 138: 1758-1763
[47]
59 Yang M, He J. Tailoring the structure of metal oxide nanostructures towards enhanced sensing properties for environmental applications. J Colloid Interface Sci, 2012, 368: 41-48
[48]
62 Xu Y, Chen D, Jiao X, et al. Nanosized Cu2O/PEG400 composite hollow spheres with mesoporous shells. J Phys Chem C, 2007, 111: 16284-16289
[49]
65 Romann J, Valmalette J C, Chevallier V, et al. Surface interactions between molecules and nanocrystals in copper oxalate nanostructures. J Phys Chem C, 2010, 114: 10677-10682
[50]
66 Ranjan R, Vaidya S, Thaplyal P, et al. Controlling the size, morphology, and aspect ratio of nanostructures using reverse micelles: A case study of copper oxalate monohydrate. Langmuir, 2009, 25: 6469-6475
[51]
3 Porter T L, Vail T L, Eastman M P, et al. A solid-state sensor platform for the detection of hydrogen cyanide gas. Sens Actuators B: Chem, 2007, 123: 313-317
[52]
4 Toth K, Pungor E. Determination of cyanides with ion-selective membrane electrodes. Anal Chim Acta, 1970, 51: 221-230
[53]
5 Meyer R E, Lantz P M. Reactions of the cyanide ion with the packed-bed silver electrode: analysis for the cyanide ion. J Electroanal Chem, 1975, 61: 155-163
[54]
6 Langmaier J, Janata J. Sensitive layer for electrochemical detection of hydrogen cyanide. Anal Chem, 1992, 64: 523-527
[55]
13 Vaiyapuri R, Greenland B W, Elliott J M, et al. Pyrene-modified quartz crystal microbalance for the detection of polynitroaromatic compounds. Anal Chem, 2011, 83: 6208-6214
[56]
15 Wang J, Zhu Z, Ma H. Label-free real-time detection of DNA methylation based on quartz crystal microbalance measurement. Anal Chem, 2013, 85: 2096-2101
[57]
16 Marx K A. Quartz crystal microbalance: A useful tool for studying thin polymer films and complex biomolecular systems at the solution surface interface. Biomacromolecules, 2003, 4: 1099-1120
[58]
25 Kuo C H, Huang M H. Morphologically controlled synthesis of Cu2O nanocrystals and their properties. Nano Today, 2010, 5: 106-116
[59]
26 Chen X, Mao S S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem Rev, 2007, 107: 2891-2959
[60]
27 Reed J, Ceder G. Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem Rev, 2004, 104: 4513-4534
[61]
53 Li Y, Liang J, Tao Z, et al. CuO particles and plates: Synthesis and gas-sensor application. Mater Res Bull, 2008, 43: 2380-2385
[62]
54 Liu J, Huang X, Li Y, et al. Formation of hierarchical CuO microcabbages as stable bionic superhydrophobic materials via a room-temperature solution-immersion process. Solid State Sci, 2008, 10: 1568-1576
[63]
60 Yu H, Yu J, Liu S, et al. Template-free hydrothermal synthesis of CuO/Cu2O composite hollow microspheres. Chem Mater, 2007, 19: 4327-4334
[64]
61 Xu Y, Jiao X, Chen D. PEG-assisted preparation of single-crystalline Cu2O hollow nanocubes. J Phys Chem C, 2008, 112: 16769-16773
[65]
63 Li S, Zhang H, Ji Y, et al. CuO nanodendrites synthesized by a novel hydrothermal route. Nanotechnology, 2004, 15: 1428-1432
[66]
64 Romann J, Chevallier V, Merlen A, et al. Self-organized assembly of copper oxalate nanocrystals. J Phys Chem C, 2009, 113: 5068-5074