全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

多介质环境模型在化学品暴露评估中的应用与展望

DOI: 10.1360/N972014-00183, PP. 3130-3143

Keywords: 化学品,风险评估,暴露评估,多介质环境模型,逸度模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于化学品引发的环境事件呈上升趋势,各国政府和公众已高度关注化学品的环境风险.欧盟发布化学品监管的法规指出"没有安全数据,就没有市场"("NoData,NoMarket").中国也发布了《新化学物质环境管理办法》,这标志着中国化学品的环境管理由危害管理过渡到风险管理.化学品的暴露评估是环境风险评估和管理的关键.多介质环境模型是化学品环境暴露评估的简便而有效的工具之一.应用多介质环境模型,可以预测化学品在环境介质中的存在水平和分布,揭示相对重要的降解过程,估计化学品在环境中的停留时间,全面地描述化学品的环境归趋.本文概述了多介质环境模型的理论基础及发展过程,重点介绍了局部、区域及全球尺度下多介质环境模型应用于化学品暴露评估的研究进展,比对分析了化学品风险评估中常用的暴露评估软件的特征.此外,还总结了中国化学品暴露评估中多介质环境模型的应用情况,展望了多介质环境模型两种发展趋势及方向.可以预见,多介质环境模型在我国化学品环境风险评估和管理领域具有巨大的应用前景.

References

[1]  1 Van Der Wielen A. REACH: Next step to a sound chemicals management. J Expo Sci Environ Epid, 2007, 17: S2-S6
[2]  2 Hendriks A J. How to deal with 100000+ substances, sites, and species: Overarching principles in environmental risk assessment. Environ Sci Technol, 2013, 47: 3546-3547
[3]  8 Jantunen L M, Bidleman T. Air-water gas exchange of hexachlorocyclohexanes (HCHs) and the enantiomers of α-HCN in arctic regions. J Geophys Res, 1997, 102: 19279-19282
[4]  9 Rueber B, Mackay D, Paterson S, et al. A discussion of chemical equilibria and transport at the sediment-water interface. Environ Toxicol Chem, 1987, 6: 731-739
[5]  10 Diamond M L, Mackay D, Cornett T J. A model of the exchange of inorganic chemicals between water and sediments. Environ Sci Technol, 1990, 24: 713-722
[6]  11 Harner T, Mackay D, Jones K C. Model of the long-term exchange of PCBs between soil and the atmosphere in the southern UK. Environ Sci Technol, 1995, 29: 1200-1209
[7]  12 Mackay D, Patesron S. Evaluating the multimedia fate of organic chemicals: A Level III fugacity model. Environ Sci Technol, 1991, 25: 427-436
[8]  13 Wania F, Mackay D, Li Y F. Global chemical fate of α-hexachlorocyclohexane. 1. Evaluation of a global distribution model. Environ Toxicol Chem, 1999, 18: 1390-1399
[9]  23 Upadhyay N, Sun Q Y, Allen J O. Synthetic musk emissions from wastewater aeration basins. Water Res, 2010, 45: 1071-1078
[10]  25 Sommerfreund J K, Gandhi N, Diamond M L, et al. Contaminant fate and transport in the Venice Lagoon: Results from a multi-segment multimedia model. Ecotox Environ Safe, 2010, 73: 222-230
[11]  26 Dyck R, Sadiq R, Rodriguez M J, et al. Trihalomethane exposures in indoor swimming pools: A level III fugacity model. Water Res, 2011, 45: 5084-5098
[12]  27 Tomko G, McDonald K M. Environmental fate of hexabromocyclododecane from a new Canadian electronic recycling facility. J Environ Manage, 2013, 114: 324-327
[13]  28 Aldekoa J, Medici C, Osorio V, et al. Modelling the emerging pollutant diclofenac with the GREAT-ER model: Application to the Llobregat River Basin. J Hazard Mater, 2013, 263: 207-213
[14]  32 MacLeod M, Mackay D. An assessment of the environmental fate and exposure of benzene and the chlorobenzenes in Canada. Chemosphere, 1999, 38: 1777-1796
[15]  36 Domenech X, Peral J, Munoz I. Predicted environmental concentrations of cocaine and benzoylecgonine in a model environmental system. Water Res, 2009, 43: 5236-5242
[16]  39 Kondo A, Yamamoto M, Inoue Y. Evaluation of lead concentration by one-box type multimedia model in Lake Biwa-Yodo River basin of Japan. Chemosphere, 2013, 92: 497-503
[17]  40 Wania F, Mackay D, Li Y F, et al. Global chemical fate of α-hexachlorocyclohexane. 1. Evaluation of a global distribution model. Environ Toxicol Chem, 1999, 18: 1390-1399
[18]  41 Wania F, Daly G L. Estimating the contribution of degradation in air and deposition to the deep sea to the global loss of PCBs. Atmos Environ, 2002, 36: 5581-5593
[19]  42 Bailey R E, van Wijk D, Thomas P C. Sources and prevalence of pentachlorobenzene in the environment. Chemosphere, 2009, 75: 555-564
[20]  43 Wania F. A global mass balance analysis of the source of perfluorocarboxylic acids in the Arctic Ocean. Environ Sci Technol, 2007, 41: 4529-4535
[21]  44 Wania F. Assessing the potential of persistent organic chemicals for long-range transport and accumulation in polar regions. Environ Sci Technol, 2003, 37: 1344-1351
[22]  45 Armitage J, Cousins I T, Buck R C, et al. Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources. Environ Sci Technol, 2006, 40: 6969-6975
[23]  46 Macleod M, Riley W J, Mckone T E. Assessing the influence of climate variability on atmospheric concentrations of polychlorinated biphenyls using a global-scale mass balance model (BETR-Global). Environ Sci Technol, 2005, 39: 6749-6756
[24]  51 Reid L, Mackay D. Local and distant residence times of contaminants in multi-compartment models. Part II: Application to assessing environmental mobility and long-range atmospheric transport. Environ Pollut, 2008, 156: 1182-1189
[25]  53 Bintein S, Devillers J. Evaluating the environmental fate of lindane in France. Chemosphere, 1996, 32: 2427-2440
[26]  54 Woodfine D, MacLeod M, Mackay D. A regionally segmented national scale multimedia contaminant fate model for Canada with GIS date input and display. Environ Pollut, 2002, 119: 341-355
[27]  56 Wania F, Mackay D. A global distribution model for persistent organic-chemicals. Sci Total Environ, 1995, 160-161: 211-232
[28]  57 Wania F, Mackay D, Li Y F. Global chemical fate of alpha-hexachlorocyclohexane. 1. Evaluation of a global distribution model. Environ Toxicol Chem, 1999, 18: 1390-1399
[29]  59 Xu F L, Qin N, Zhu Y, et al. Multimedia fate modeling of polycyclic aromatic hydrocarbons (PAHs) in Lake Small Baiyangdian, Northern China. Ecol Modell, 2013, 252: 246-257
[30]  60 汪祖丞,刘敏,杨毅,等. 菲在长江口的多介质归趋模拟. 环境科学, 2011, 32: 2443-2449
[31]  61 Ao J T, Chen J W, Tian F L, et al. Application of a level IV fugacity model to simulate the long-term fate of hexachlorocyclohexane isomers in the lower reach of Yellow River basin, China. Chemosphere, 2009, 74: 370-376
[32]  67 Lang C, Tao S, Wang X J, et al. Seasonal variation of polycyclic aromatic hydrocarbons (PAHs) in Pearl River Delta region, China. Atmos Environ, 2007, 41: 8370-8379
[33]  70 MacLeod M, Scheringer M, McKone T E. The state of multimedia mass-balance modeling in environmental science and decision-making. Environ Sci Technol, 2010, 44: 8360-8364
[34]  3 van Leeuwen C J, Vermeire T G. Risk Assessment of Chemicals—An Introduction. 2nd ed. Netherlands: Springer, 2007
[35]  4 Mackay D. Multimedia Environmental Models: The Fugacity Approach. 2nd ed. Washington DC: Lewis Publishers, 2001
[36]  5 Mackay D. Finding fugacity feasible. Environ Sci Technol, 1979, 13: 1218-1223
[37]  6 Mackay D, Joy M, Paterson S. A quantitative water, air, sediment interaction (QWASI) fugacity model for describing the fate of chemicals in lakes. Chemosphere, 1983, 12: 981-997
[38]  7 Mackay D, Paetsron S, Sehroeder W H. Model describing the rates of transfer processes of organic chemicals between atmosphere and water. Environ Sci Technol, 1986, 20: 810-816
[39]  14 Woodfne D, Macleod M, Mackay D. A regionally segmented national scale multimedia contaminant fate model for Canada with GIS data input and display. Environ Pollut, 2002, 119: 341-355
[40]  15 Hauck M, Huijbregts M J, Armitage J M, et al. Model and input uncertainty in multi-media fate modeling: Benzo[a]pyrene concentrations in Europe. Chemosphere, 2008, 72: 959-967
[41]  16 Pistocchi A, Sarigiannis D, Vizcaino P. Spatially explicit multimedia fate models for pollutants in Europe: State of the art and perspectives. Sci Total Environ, 2009, 408: 3817-3830
[42]  17 刘世杰, 吕永龙, 史雅娟. 持久性有机污染物环境多介质空间分异模型研究进展. 生态毒理学报, 2011, 6: 129-137
[43]  18 Wania F. Spatial variability in compartmental fate modeling-linking fugacity models and GIS. Chemosphere, 1996, 3: 39-46
[44]  19 Prevedouros K, MacLeod M, Jones K C, et al. Modelling the fate of persistent organic pollutants in Europe: Parameterisation of a gridded distribution model. Environ Pollut, 2004, 128: 251-261
[45]  20 Suzuki N, Murasawa K, Sakurai T, et al. Geo-referenced multimedia environmental fate model (G-CIEMS): Model formulation and comparison to the generic model and monitoring approaches. Environ Sci Technol, 2004, 38: 5682-5693
[46]  21 Suzuki N. Assessment of environmental fate and exposure variability of organic contaminants. J Pharm Soc Jpn, 2007, 127: 437-447
[47]  22 Stanton K, Tibazarwa C, Certa H, et al. Environmental risk assessment of hydrotropes in the United States, Europe, and Australia. Integr Environm Asses, 2009, 6: 155-163
[48]  24 Olofsson U, Lundstedt S, Haglund P. Behavior and fate of anthropogenic substances at a Swedish sewage treatment plant. Water Sci Technol, 2012, 62: 2880-2888
[49]  29 Devillers J, Bintein S, Karcher W. Chemfrance: A regional level III fugacity model applied to France. Chemosphere, 1995, 30: 457-476
[50]  30 Bintein S, Devillers J. Evaluating the environmental fate of atrazine in France. Chemosphere, 1996, 32: 2441-2456
[51]  31 Bintein S, Devillers J. Evaluating the environmental fate of lindane in France. Chemosphere, 1996, 32: 2427-2440
[52]  33 Zhang Q O, Crittenden J C, Sonnard D. Development and evaluation of an environmental multimedia fate model CHEMGL for the Great Lakes region. Chemosphere, 2003, 50: 1377-1397
[53]  34 Managaki S, Enomoto I, Masunaga S. Sources and distribution of hexabromocyclododecanes (HBCDs) in Japanese river sediment. J Environ Monit, 2012, 14: 901-907
[54]  35 Kawamoto K, MacLeod M, Mackay D. Evaluation and comparison of multimedia mass balance models of chemical fate: Application of EUSES and ChemCAN to 68 chemicals in Japan. Chemospere, 2001, 44: 599-612
[55]  37 Kilic S G, Aral M M. A fugacity based continuous and dynamic fate and transport model for river networks and its application to Altamaha River. Sci Total Environ, 2009, 407: 3855-3866
[56]  38 Lim D H, Lastoskie C M. A dynamic multimedia environmental and bioaccumulation model for brominated flame retardants in lake Huron and lake Erie, USA. Environ Toxicol Chem, 2011, 30: 1018-1025
[57]  47 Hauck M, Huijbregts M J, Armitage J M, et al. Model and input uncertainty in multi-media fate modeling: Benzo[a]pyrene concentrations in Europe. Chemosphere, 2008, 72: 959-967
[58]  48 Lamon L, von Waldow H, MacLeod M, et al. Modeling the global levels and distribution of polychlorinated biphenyls in air under a climate change scenario. Environ Sci Technol, 2009, 43: 5818-5824
[59]  49 MacLeod M, von Waldow H, Tay P, et al. BETR global—A geographically-explicit global-scale multimedia contaminant fate model. Environ Pollut, 2011, 159: 1442-1445
[60]  50 Toose L, Woodfine D G, MacLeod M, et al. BETR-World: A geographically explicit model of chemical fate: Application to transport of α-HCH to the Arctic. Environ Pollut, 2004, 128: 223-240
[61]  52 Vermeire T G, Jager D T, Bussian B. European Union system for the evaluation of substances (EUSES). Principles and structure. Chemosphere, 1997, 34: 1823-1836
[62]  55 MacLeod M, Woodfine D, Brimacombe J, et al. A dynamic mass budget for toxaphene in north America. Environ Toxicol Chem, 2002, 21: 1628-1637
[63]  58 叶常明, 雷志芳, 王宏, 等. 有机污染物多介质环境的稳态非平衡模型. 环境科学学报, 1995, 2: 192-198
[64]  62 Liu Z Y, Quan X, Yang F L. Long-term fate of three hexachlorocyclohexanes in the lower reach of Liao Riverbasin: Dynamic mass budgets and pathways. Chemosphere, 2007, 69: 1159-1165
[65]  63 Wang C, Feng Y J, Sun Q F, et al. A multimedia fate model to evaluate the fate of PAHs in Songhua River, China. Environ Pollut, 2012, 164: 81-88
[66]  64 Cao H Y, Tao S, Xu F L, et al. Multimedia fate model for hexachlorocyclohexane in Tianjin, China. Environ Sci Technol, 2004, 38: 2126-2132
[67]  65 Tao S, Yang Y, Cao H Y, et al. Modeling the dynamic changes in concentrations of γ-hexachlorocyclohexane (γ-HCH) in Tianjin region from 1953 to 2020. Environ Pollut, 2006, 144: 183-193
[68]  66 Wang W T, Staci S, Basant G, et al. Atmospheric concentrations and air-soil gas exchange of polycyclic aromatichydrocarbons (PAHs) in remote, rural village and urban areas of Beijing-Tianjin region, North China. Sci Total Environ, 2011, 409: 2942-2950
[69]  68 Dong J Y, Wang S G, Shang K Z. Simulation of the long-term transfer and fate of DDT in Lanzhou, China. Chemosphere, 2010, 81: 529-535
[70]  69 Liu S J, Lu Y L, Wang T Y, et al. Using gridded multimedia model to simulate spatial fate of benzo[a]pyrene on regional scale. Environ Int, 2014, 63: 53-63

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133