全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

基于3D打印技术的岩体复杂结构与应力场的可视化方法

DOI: 10.1360/csb2014-59-32-3109, PP. 3109-3119

Keywords: 裂隙岩体,3D打印,裂隙结构模型,应力场,可视化

Full-Text   Cite this paper   Add to My Lib

Abstract:

准确表征与直观显示岩体复杂的内部结构与应力场是解决诸多地下工程问题的基础和关键.本文运用CT成像、三维重构和3D打印技术制备了包含复杂裂隙的天然煤岩模型,借助三维应力冻结和光弹技术,直观定量地显示了单轴压缩载荷作用下复杂裂隙煤岩内部的应力场分布特征.研究表明通过3D打印技术制备的煤岩模型具有与天然煤岩一致的裂隙结构特征;3D模型的单轴抗压强度、弹性模量和泊松比等力学性能指标接近于天然裂隙煤岩;在不连续裂隙周边的高应力分布区域以及应力级差等方面,3D模型的实验结果与数值模拟结果具有较好的一致性;该方法能够直观定量地显示不连续不规则裂隙对煤岩的强度、变形以及应力集中区的影响.3D模型打印与应力冻结技术相结合为实现地下岩体内部复杂结构与三维应力场分布的定量表征与可视化,以及印证数值模拟结果提供了新途径.

References

[1]  1 周新桂, 操成杰, 袁嘉音. 储层构造裂缝定量预测与油气渗流规律研究现状和进展. 地球科学进展, 2003, 18: 398-404
[2]  3 Zhang L K, Wang Z L, Qu Z H, et al. Physical simulation experiment of gas migration in sandstone porous media. Acta Geol Sin, 2007, 81: 539-544
[3]  4 Mazumder S, Wolf K. Differential swelling and permeability change of coal in response to CO2 injection for ECBM. Int J Coal Geol, 2008, 74: 123-138
[4]  5 Song H Z, Zeng H R, Sun J X, et al. Methods of reservoir tectonic fracture prediction and its application. Seismol Geol, 1999, 21: 205-213
[5]  8 Shaika A R, Rahmana S S, Trana N H, et al. Numerical simulation of fluid-rock coupling heat transfer in naturally fractured geothermal system. Appl Thermal Eng, 2011, 31: 1600-1606
[6]  9 Xu T F, Sampera J, Ayorab C, et al. Modeling of non-isothermal multi-component reactive transport in field scale porous media flow systems. J Hydrol, 1999, 214: 144-164
[7]  11 Kim S O, Kim J J, Yun S T, et al. Numerical and experimental studies on cadmium (II) transport in kaolinite clay under electrical fields. Water Air Soil Pollut, 2003, 150: 135-162
[8]  12 李永松, 尹健民, 艾凯. 小湾水电站坝基岩体弹模与地应力测试研究. 地下空间与工程学报, 2006, 2: 912-915
[9]  15 杨树新, 李宏, 白明洲, 等. 高地应力环境下硐室开挖围岩应力释放规律. 煤炭学报, 2010, 35: 26-30
[10]  19 Morgeneyer T F, Starink M J, Sinclair I. Evolution of voids during ductile crack propagation in an aluminum alloy sheet toughness test studied by synchrotron radiation computed tomography. Acta Mater, 2008, 56: 1671-1679
[11]  20 Nelson R A, Handin J. Experimental study of fracture permeability in porous rock. AAPG Bull, 1977, 61: 227-236
[12]  21 Bai M, Roegiers J C, Elsworth D. Poromechanical response of fractured-porous rock masses. J Petrol Sci Eng, 1995, 13: 155-168
[13]  22 Degueldre C, Pleinert H, Maguire P, et al. Porosity and pathway determination in crystalline rock by positron emission tomography and neutron radiography. Earth Planet Sci Lett, 1996, 140: 213-225
[14]  25 Pingguang X, Tomota Y. Progress in materials characterization technique based on in-situ neutron diffraction. Acta Metall Sin, 2006, 42: 681-688
[15]  26 Dimas L S, Giesa T, Buehler M J. Coupled continuum and discrete analysis of random heterogeneous materials: Elasticity and fracture. J Mech Phys Solids, 2014, 63: 481-490
[16]  27 Farhat C, Avery P, Chapman T, et al. Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy- based mesh sampling and weighting for computational efficiency. Int J Num Meth Eng, 2014, 98: 625-662
[17]  28 Wang S Y, Sloan S W, Sheng D C, et al. Numerical study of failure behaviour of pre-cracked rock specimens under conventional triaxial compression. Int J Solids Struct, 2014, 51: 1132-1148
[18]  29 Lisjak A, Liu Q, Zhao Q, et al. Numerical simulation of acoustic emission in brittle rocks by two-dimensional finite-discrete element analysis. Geophys J Int, 2013, 195: 423-443
[19]  30 Ghotbi R E, Rahmannejad R, Feili M A E, et al. Application of numerical modeling and genetic programming to estimate rock mass modulus of deformation. Int J Min Sci Tech, 2013, 23: 733-737
[20]  31 Hart R. Enhancing rock stress understanding through numerical analysis. Int J Rock Mech Min Sci, 2003, 40: 1089-1097
[21]  32 Yun T S, Jeong Y J, Kim K Y, et al. Evaluation of rock anisotropy using 3D X-ray computed tomography. Eng Geol, 2013, 163: 11-19
[22]  47 Ju Y, Wang H J, Yang Y M, et al. Numerical simulation of mechanisms of deformation, failure and energy dissipation in porous rock media subjected to wave stresses. Sci China Tech Sci, 2010, 53: 1098-1113
[23]  48 Piri M, Blunt M. Three-dimensional mix-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description. Phys Rev E, 2005, 71: 026301
[24]  53 Buckberry C, Towers D. New approaches to the full-field analysis of photoelastic stress patterns. Opt Laser Eng, 1996, 24: 415-428
[25]  54 Pinit P, Umezaki E. Digitally whole-field analysis of isoclinic parameter in photoelasticity by four-step color phase-shifting technique. Opt Laser Eng, 2007, 45: 795-807
[26]  55 Baldi A, Bertolino F, Ginesu F. A temporal phase unwrapping algorithm for photoelastic stress analysis. Opt Laser Eng, 2007, 45: 612-617
[27]  58 Jee H J, Sachs E. A visual simulation technique for 3D printing. Adv Eng Software, 2000, 31: 97-106
[28]  59 Miller B W, Moore J W, Barrett H H, et al. 3D printing in X-ray and gamma-ray imaging: A novel method for fabricating high-density imaging apertures. Nucl Instrum Methods Phys Res Sect A, 2011, 659: 262-268
[29]  63 Ju Y, Zheng J T, Epstein M. 3D numerical reconstruction of well-connected porous structure of rock using fractal algorithms. Comput Methods Appl Mech Eng, 2014, 279: 212-226
[30]  64 鞠杨, 郑江韬, 杨永明, 等. 岩石孔隙结构的分形重构与分析软件. 计算机软件著作权登记证书(#0449190). 北京: 中国人民共和国国家版权局, 2012
[31]  65 Shin D C, Hawong J S. Development of a hybrid method of reflection photoelasticity for crack problems in anisotropic plates. Exper Mech, 2011, 51: 183-198
[32]  66 Dally J W, Riley W F. Experimental Stress Analysis. 3rd ed. New York: McGraw-Hill Inc., 1991
[33]  2 侯泉林, 李会军, 范俊佳, 等. 构造煤结构与煤层气赋存研究进展. 中国科学: 地球科学, 2012, 42: 1487-1495
[34]  6 Wang J. On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China. J Rock Mech Geotech Eng, 2014, 6: 99-104
[35]  7 White C M, Smith D H, Jones K L, et al. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery—A review. Energy Fuels, 2005, 19: 659-724
[36]  10 刘建国, 王洪涛, 聂永丰. 多孔介质中溶质有效扩散系数预测的分形模型. 水科学进展, 2004, 15: 458-462
[37]  13 蔡元奇, 朱以文, 李金光, 等. 地质缺陷对拱坝及坝基力学行为的影响. 岩石力学与工程学报, 2002, 21: 1805-1809
[38]  14 刘新荣, 傅晏, 王永新, 等. 水-岩相互作用对库岸边坡稳定的影响研究. 岩土力学, 2009, 30: 613-616
[39]  16 朱浩, 朱亮, 陈剑虹. 不同应力状态下铝合金变形及损伤机理的研究. 稀有金属材料与工程, 2007, 36: 597-601
[40]  17 Tarpania J R, Ruckerta C O F T, Milana M T. Estimating fatigue life under variable amplitude loading through quantitative fractography—A case study. Eng Failure Anal, 2004, 11: 547-559
[41]  18 郑冶沙, 王中光, 艾素华. 疲劳裂纹尖端的位错结构. 金属学报, 1995, 31: 105-114
[42]  23 Liu J, Elsworth D, Brady B H. Linking stress-dependent effective porosity and hydraulic conductivity fields to RMR. Int J Rock Mech Min Sci, 1999, 36: 581-596
[43]  24 Maguire R P, Missimer J H, Emert F, et al. Positron emission tomography of large rock samples using a multiring PET instrument. IEEE Trans Nucl Sci, 1997, 44: 26-30
[44]  33 Raynaud S, Fabre D, Mazerolle F, et al. Analysis of the internal structure of rocks and characterization of mechanical deformation by a non-destructive method: X-ray tomodensitometry. Tectonophys, 1989, 159: 149-159
[45]  34 Nasseri M H B, Rezanezhad F, Young R P. Analysis of fracture damage zone in anisotropic granitic rock using 3D X-ray CT scanning techniques. Int J Fracture, 2011, 168: 1-13
[46]  35 Mori S, Endo M. Candidate image processing for real-time volumetric CT subtraction angiography. Eur J Radiol, 2007, 61: 335-341
[47]  36 Kawakata H, Cho A, Kiyama T, et al. Three-dimensional observations of faulting process in westerly granite under uniaxial and triaxial conditions by X-ray CT scan. Tectonophys, 1999, 313: 293-305
[48]  37 Birk M, Dapp R, Ruiter N V, et al. GPU-based iterative transmission reconstruction in 3D ultrasound computer tomography. J Parallel Distri Comput, 2014, 74: 1730-1743
[49]  38 Hajizadeh A, Safekordi A, Farhadpour F A. A multiple-point statistics algorithm for 3D pore space reconstruction from 2D images. Adv Water Resour, 2011, 34: 1256-1267
[50]  39 Gomi T, Koshida K, Miyati T. Development of a non-linear weighted hybrid cone-beam CT reconstruction for circular trajectories. Comput Med Imaging Graph, 2007, 31: 561-569
[51]  40 Geiger J, Hunyadfalvi Z, Bogner P. Analysis of small-scale heterogeneity in clastic rocks by using computerized X-ray tomography (CT). Eng Geol, 2009, 103: 112-118
[52]  41 Ru Z, Ting A, Hegui L, et al. 3D reconstruction method and connectivity rules of fracture networks generated under different mining layouts. Int J Min Sci Tech, 2013, 23: 863-871
[53]  42 Rani H P, Divya T, Sahaya R R, et al. Numerical investigation of energy and Reynolds stress distribution for a turbulent flow in an orifice. Eng Failure Analys, 2013, 34: 451-463
[54]  43 Jafarian Y, Sadeghi A A, Vakili R, et al. On the efficiency and predictability of strain energy for the evaluation of liquefaction potential: A numerical study. Comput Geotech, 2011, 38: 800-808
[55]  44 Latief F D E, Biswal B, Fauzi U, et al. Continuum reconstruction of the pore scale microstructure for Fontainebleau sandstone. Phys A: Statist Mech Appl, 2010, 389: 1607-1618
[56]  45 Ju Y, Yang Y M, Song Z D, et al. A statistical model for porous structure of rocks. Sci China Ser E Tech Sci, 2008, 51: 1026-1041
[57]  46 Hossain M M, Rahman M K. Numerical simulation of complex fracture growth during tight reservoir stimulation by hydraulic fracturing. J Petrol Sci Eng, 2008, 60: 86-104
[58]  49 Pappalettre C, Galietti U. Polycarbonate for frozen stress photoelasticity. Strain, 1995, 31: 69-74
[59]  50 Epstein J S, Post D, Smith C W. Three-dimensional photoelastic measurements with very thin slices. Exp Tech, 1984, 8: 34-37
[60]  51 Schroedl M A, McGowan J J, Smith C W. An assessment of factors influencing data obtained by the photoelastic stress freezing technique for stress fields near crack tips. Eng Fract Mech, 1972, 4: 801-809
[61]  52 Hyde T H, Warrior N A. An improved method for the determination of photoelastic stress intensity factors using the Westergaard stress function. Int J Mech Sci, 1990, 32: 265-273
[62]  56 Kruth J P, Leu M C, Nakagawa T. Progress in additive manufacturing and rapid prototyping. CIRP Annals-Manufact Tech, 1998, 47: 525-540
[63]  57 Campbell T A, Ivanova O S. 3D printing of multifunctional nanocomposites. Nano Today, 2013, 8: 119-120
[64]  60 Kostakis V, Papachristou M. Commons-based peer production and digital fabrication: The case of a rep rap-based, Lego-built 3D printing-milling machine. Telem Inform, 2013, 31: 434-443
[65]  61 孙华飞, 杨永明, 鞠杨, 等. 开挖卸荷条件下煤岩变形破坏与能量释放的数值分析. 煤炭学报, 2014, 39: 258-272
[66]  62 鞠杨, 行明旭, 孙华飞, 等. 岩石混凝土裂纹提取与识别分析软件. 计算机软件著作权登记证书(#0530646). 北京: 中国人民共和国国家版权局, 2013
[67]  67 Ramesh K. Digital Photoelasticity: Advanced Techniques and Applications. Berlin: Springer-Verlag, 2000

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133