3 Zhang L K, Wang Z L, Qu Z H, et al. Physical simulation experiment of gas migration in sandstone porous media. Acta Geol Sin, 2007, 81: 539-544
[3]
4 Mazumder S, Wolf K. Differential swelling and permeability change of coal in response to CO2 injection for ECBM. Int J Coal Geol, 2008, 74: 123-138
[4]
5 Song H Z, Zeng H R, Sun J X, et al. Methods of reservoir tectonic fracture prediction and its application. Seismol Geol, 1999, 21: 205-213
[5]
8 Shaika A R, Rahmana S S, Trana N H, et al. Numerical simulation of fluid-rock coupling heat transfer in naturally fractured geothermal system. Appl Thermal Eng, 2011, 31: 1600-1606
[6]
9 Xu T F, Sampera J, Ayorab C, et al. Modeling of non-isothermal multi-component reactive transport in field scale porous media flow systems. J Hydrol, 1999, 214: 144-164
[7]
11 Kim S O, Kim J J, Yun S T, et al. Numerical and experimental studies on cadmium (II) transport in kaolinite clay under electrical fields. Water Air Soil Pollut, 2003, 150: 135-162
19 Morgeneyer T F, Starink M J, Sinclair I. Evolution of voids during ductile crack propagation in an aluminum alloy sheet toughness test studied by synchrotron radiation computed tomography. Acta Mater, 2008, 56: 1671-1679
[11]
20 Nelson R A, Handin J. Experimental study of fracture permeability in porous rock. AAPG Bull, 1977, 61: 227-236
[12]
21 Bai M, Roegiers J C, Elsworth D. Poromechanical response of fractured-porous rock masses. J Petrol Sci Eng, 1995, 13: 155-168
[13]
22 Degueldre C, Pleinert H, Maguire P, et al. Porosity and pathway determination in crystalline rock by positron emission tomography and neutron radiography. Earth Planet Sci Lett, 1996, 140: 213-225
[14]
25 Pingguang X, Tomota Y. Progress in materials characterization technique based on in-situ neutron diffraction. Acta Metall Sin, 2006, 42: 681-688
[15]
26 Dimas L S, Giesa T, Buehler M J. Coupled continuum and discrete analysis of random heterogeneous materials: Elasticity and fracture. J Mech Phys Solids, 2014, 63: 481-490
[16]
27 Farhat C, Avery P, Chapman T, et al. Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy- based mesh sampling and weighting for computational efficiency. Int J Num Meth Eng, 2014, 98: 625-662
[17]
28 Wang S Y, Sloan S W, Sheng D C, et al. Numerical study of failure behaviour of pre-cracked rock specimens under conventional triaxial compression. Int J Solids Struct, 2014, 51: 1132-1148
[18]
29 Lisjak A, Liu Q, Zhao Q, et al. Numerical simulation of acoustic emission in brittle rocks by two-dimensional finite-discrete element analysis. Geophys J Int, 2013, 195: 423-443
[19]
30 Ghotbi R E, Rahmannejad R, Feili M A E, et al. Application of numerical modeling and genetic programming to estimate rock mass modulus of deformation. Int J Min Sci Tech, 2013, 23: 733-737
[20]
31 Hart R. Enhancing rock stress understanding through numerical analysis. Int J Rock Mech Min Sci, 2003, 40: 1089-1097
[21]
32 Yun T S, Jeong Y J, Kim K Y, et al. Evaluation of rock anisotropy using 3D X-ray computed tomography. Eng Geol, 2013, 163: 11-19
[22]
47 Ju Y, Wang H J, Yang Y M, et al. Numerical simulation of mechanisms of deformation, failure and energy dissipation in porous rock media subjected to wave stresses. Sci China Tech Sci, 2010, 53: 1098-1113
[23]
48 Piri M, Blunt M. Three-dimensional mix-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description. Phys Rev E, 2005, 71: 026301
[24]
53 Buckberry C, Towers D. New approaches to the full-field analysis of photoelastic stress patterns. Opt Laser Eng, 1996, 24: 415-428
[25]
54 Pinit P, Umezaki E. Digitally whole-field analysis of isoclinic parameter in photoelasticity by four-step color phase-shifting technique. Opt Laser Eng, 2007, 45: 795-807
[26]
55 Baldi A, Bertolino F, Ginesu F. A temporal phase unwrapping algorithm for photoelastic stress analysis. Opt Laser Eng, 2007, 45: 612-617
[27]
58 Jee H J, Sachs E. A visual simulation technique for 3D printing. Adv Eng Software, 2000, 31: 97-106
[28]
59 Miller B W, Moore J W, Barrett H H, et al. 3D printing in X-ray and gamma-ray imaging: A novel method for fabricating high-density imaging apertures. Nucl Instrum Methods Phys Res Sect A, 2011, 659: 262-268
[29]
63 Ju Y, Zheng J T, Epstein M. 3D numerical reconstruction of well-connected porous structure of rock using fractal algorithms. Comput Methods Appl Mech Eng, 2014, 279: 212-226
65 Shin D C, Hawong J S. Development of a hybrid method of reflection photoelasticity for crack problems in anisotropic plates. Exper Mech, 2011, 51: 183-198
[32]
66 Dally J W, Riley W F. Experimental Stress Analysis. 3rd ed. New York: McGraw-Hill Inc., 1991
6 Wang J. On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China. J Rock Mech Geotech Eng, 2014, 6: 99-104
[35]
7 White C M, Smith D H, Jones K L, et al. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery—A review. Energy Fuels, 2005, 19: 659-724
17 Tarpania J R, Ruckerta C O F T, Milana M T. Estimating fatigue life under variable amplitude loading through quantitative fractography—A case study. Eng Failure Anal, 2004, 11: 547-559
23 Liu J, Elsworth D, Brady B H. Linking stress-dependent effective porosity and hydraulic conductivity fields to RMR. Int J Rock Mech Min Sci, 1999, 36: 581-596
[43]
24 Maguire R P, Missimer J H, Emert F, et al. Positron emission tomography of large rock samples using a multiring PET instrument. IEEE Trans Nucl Sci, 1997, 44: 26-30
[44]
33 Raynaud S, Fabre D, Mazerolle F, et al. Analysis of the internal structure of rocks and characterization of mechanical deformation by a non-destructive method: X-ray tomodensitometry. Tectonophys, 1989, 159: 149-159
[45]
34 Nasseri M H B, Rezanezhad F, Young R P. Analysis of fracture damage zone in anisotropic granitic rock using 3D X-ray CT scanning techniques. Int J Fracture, 2011, 168: 1-13
[46]
35 Mori S, Endo M. Candidate image processing for real-time volumetric CT subtraction angiography. Eur J Radiol, 2007, 61: 335-341
[47]
36 Kawakata H, Cho A, Kiyama T, et al. Three-dimensional observations of faulting process in westerly granite under uniaxial and triaxial conditions by X-ray CT scan. Tectonophys, 1999, 313: 293-305
[48]
37 Birk M, Dapp R, Ruiter N V, et al. GPU-based iterative transmission reconstruction in 3D ultrasound computer tomography. J Parallel Distri Comput, 2014, 74: 1730-1743
[49]
38 Hajizadeh A, Safekordi A, Farhadpour F A. A multiple-point statistics algorithm for 3D pore space reconstruction from 2D images. Adv Water Resour, 2011, 34: 1256-1267
[50]
39 Gomi T, Koshida K, Miyati T. Development of a non-linear weighted hybrid cone-beam CT reconstruction for circular trajectories. Comput Med Imaging Graph, 2007, 31: 561-569
[51]
40 Geiger J, Hunyadfalvi Z, Bogner P. Analysis of small-scale heterogeneity in clastic rocks by using computerized X-ray tomography (CT). Eng Geol, 2009, 103: 112-118
[52]
41 Ru Z, Ting A, Hegui L, et al. 3D reconstruction method and connectivity rules of fracture networks generated under different mining layouts. Int J Min Sci Tech, 2013, 23: 863-871
[53]
42 Rani H P, Divya T, Sahaya R R, et al. Numerical investigation of energy and Reynolds stress distribution for a turbulent flow in an orifice. Eng Failure Analys, 2013, 34: 451-463
[54]
43 Jafarian Y, Sadeghi A A, Vakili R, et al. On the efficiency and predictability of strain energy for the evaluation of liquefaction potential: A numerical study. Comput Geotech, 2011, 38: 800-808
[55]
44 Latief F D E, Biswal B, Fauzi U, et al. Continuum reconstruction of the pore scale microstructure for Fontainebleau sandstone. Phys A: Statist Mech Appl, 2010, 389: 1607-1618
[56]
45 Ju Y, Yang Y M, Song Z D, et al. A statistical model for porous structure of rocks. Sci China Ser E Tech Sci, 2008, 51: 1026-1041
[57]
46 Hossain M M, Rahman M K. Numerical simulation of complex fracture growth during tight reservoir stimulation by hydraulic fracturing. J Petrol Sci Eng, 2008, 60: 86-104
[58]
49 Pappalettre C, Galietti U. Polycarbonate for frozen stress photoelasticity. Strain, 1995, 31: 69-74
[59]
50 Epstein J S, Post D, Smith C W. Three-dimensional photoelastic measurements with very thin slices. Exp Tech, 1984, 8: 34-37
[60]
51 Schroedl M A, McGowan J J, Smith C W. An assessment of factors influencing data obtained by the photoelastic stress freezing technique for stress fields near crack tips. Eng Fract Mech, 1972, 4: 801-809
[61]
52 Hyde T H, Warrior N A. An improved method for the determination of photoelastic stress intensity factors using the Westergaard stress function. Int J Mech Sci, 1990, 32: 265-273
[62]
56 Kruth J P, Leu M C, Nakagawa T. Progress in additive manufacturing and rapid prototyping. CIRP Annals-Manufact Tech, 1998, 47: 525-540
[63]
57 Campbell T A, Ivanova O S. 3D printing of multifunctional nanocomposites. Nano Today, 2013, 8: 119-120
[64]
60 Kostakis V, Papachristou M. Commons-based peer production and digital fabrication: The case of a rep rap-based, Lego-built 3D printing-milling machine. Telem Inform, 2013, 31: 434-443