全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

磁约束等离子体中的射频波电流驱动和流驱动

DOI: 10.1360/N972014-00541, PP. 3120-3129

Keywords: 磁约束等离子体,射频波,电流驱动,流驱动,等离子体旋转

Full-Text   Cite this paper   Add to My Lib

Abstract:

射频波可以进入聚变等离子体,通过无碰撞机制将能量和动量沉积于其中,在加热等离子体的同时,还可以驱动等离子体电流和等离子体流.等离子体电流的非感应维持是托卡马克类型聚变装置稳态运行的关键,而电流剖面的控制及等离子体流的存在对于抑制磁流体不稳定性、建立和维持高性能的约束模式至关重要,因此射频波电流驱动和流驱动在磁约束聚变等离子体物理研究中有重要意义.本文从等离子体中波与粒子相互作用的基本物理出发,对磁约束等离子体中射频波电流驱动和流驱动的研究现状、面临的挑战、以及可能的研究趋势进行了简要评述.几个关键问题被特别指出,包括共振吸收机制与高密度下射频波电流驱动效率衰减的内在联系;非共振驱动机制的可行性探讨;从动量获取和动量弛豫的平衡关系出发探索共振机制下提高驱动效率的可能性;流驱动中射频波的直接驱动和间接驱动效应,尤其是射频波有质动力效应;射频波耦合和传播过程中复杂的非线性过程对电流驱动和流驱动的影响等.

References

[1]  3 ITER Physics Expert Group on Energetic Particles, Heating and Current Drive and ITER Physics Basis Editors. Chapter 6: Plasma auxiliary heating and current drive. Nucl Fusion, 1999, 39: 2495-2540
[2]  4 Hemsworth R, Decamps R H, Graceffa J, et al. Status of the ITER heating neutral beam system. Nucl Fusion, 2009, 49: 045006
[3]  5 Strait E J, Taylor T S, Turnbull A D, et al. Wall stabilization of high-beta tokamak discharges in DIII-D. Phys Rev Lett, 1995, 74: 2483-2486
[4]  6 Chu M S, Greene J M, Jensen T H, et al. Effect of toroidal plasma flow and flow shear on global magnetohydrodynamic MHD modes. Phys Plasmas, 1995, 2: 2236-2241
[5]  7 Noterdaeme J M, Van Oost G. The interaction between waves in the ion-cyclotron range of frequencies and the plasma boundary. Plasma Phys Control Fusion, 1993, 35: 1481-1511
[6]  8 Colas L, Faudot E, Bremond S, et al. Theory and practice in ICRF antennas for long pulse operation. AIP Conf Proc, 2005, 787: 150-157
[7]  9 Pericoli R V, Apicella M L, Calabr O G, et al. Lower hybrid current drive efficiency in tokamaks and wave scattering by density fluctuations at the plasma edge. Nucl Fusion, 2011, 51: 113023
[8]  12 Dawson J. On Landau damping. Phys Fluids, 1961, 4: 869-874
[9]  13 Malmberg J H, Wharton C B. Dispersion of electron plasma waves. Phys Rev Lett, 1966, 17: 175-178
[10]  14 Fisch N J. Theory of current drive in plasmas. Rev Mod Phys, 1987, 59: 175-234
[11]  15 Wort D J H. The peristaltic tokamak. Plasma Phys, 1971, 13: 258-262
[12]  16 Fisch N J, Karney C F F. Current generation with low-frequency waves. Phys Fluids, 1981, 24: 27-39
[13]  18 Fisch N J. Confining a tokamak plasma with rf-driven currents. Phys Rev Lett, 1978, 41: 873-876
[14]  19 Karney C F F, Fisch N J. Numerical studies of current generation by radio-frequency traveling waves. Phys Fluids, 1979, 22: 1817-1824
[15]  20 Fisch N J, Boozer A H. Creating an anisotropic plasma resistivity with waves. Phys Rev Lett, 1980, 45: 720-723
[16]  21 Ohkawa T. New methods of driving plasma current in fusion devices. Nucl Fusion, 1970, 10: 185-187
[17]  22 Fisch N J. Current generation by minority-species heating. Nucl Fusion, 1981, 21: 15-22
[18]  23 Ohkawa T. Plasma current drive by injection of photons with helicity. Comments Plasma Phys Contr Fusion, 1989, 12: 165-169
[19]  24 Klima R. Fluid description of particle-transport in HF heated magnetized plasma. Czech J Phys Sect B, 1980, 30: 874-884
[20]  26 Tsypin V S, Elfimov A G, de Azevedo C A, et al. Hydrodynamic description of Alfven and fast-wave current drive in weakly collisional plasma of magnetic traps. Phys Plasmas, 1995, 2: 2784-2789
[21]  27 Chan V S, Chiu S C. Radio-frequency force and wave helicity transport. Phys Fluids B, 1993, 5: 3590-3595
[22]  28 Fukuyama A, Itoh K, Itoh S I, et al. Nonresonant current drive and helicity injection by radiofrequency waves. Phys Fluids B, 1993, 5: 539-549
[23]  29 Gao Z, Fisch N J, Qin H. Nonlinear ponderomotive force by low frequency waves and nonresonant current drive. Phys Plasmas, 2006, 13: 112307
[24]  30 Gao Z, Fisch N J, Qin H, et al. Nonlinear nonresonant forces by radio-frequency waves in plasmas. Phys Plasmas, 2007, 14: 084502
[25]  32 Gao Z, Chen J, Fisch N J. Parallel rf force driven by the inhomogeneity of power absorption in magnetized plasma. Phys Rev Lett, 2013, 110: 235004
[26]  38 Zhao A, Gao Z. Parameter study of parametric instabilities during lower hybrid wave injection into tokamaks. Nucl Fusion, 2013, 53: 083015
[27]  42 Itoh S I, Itoh K. Model of L-mode to H-mode transition in tokamak. Phys Rev Lett, 1988, 60: 2276-2279
[28]  43 Shaing K C, Zhang Y Z. Transition to high mode induced by reduction of magnetic stress. Phys Plasmas, 1995, 2: 3243-3245
[29]  66 Ware A A. Pinch effect for trapped particles in a tokamak. Phys Rev Lett, 1970, 25: 15-17
[30]  67 Gao Z, Fisch N J, Qin H. Radial electric field generated by resonant trapped electron pinch with radio frequency injection in a tokamak plasma. Phys Plasmas, 2011, 18: 082507
[31]  77 Yoshida M, Sakamoto Y, Takenaga H, et al. Rotation drive and momentum transport with electron cyclotron heating in tokamak plasmas. Phys Rev Lett, 2009, 103: 065003
[32]  78 Shi Y J, Ko W H, Kwon J M, et al. ECH effects on toroidal rotation: KSTAR experiments, intrinsic torque modelling and gyrokinetic stability analyses. Nucl Fusion, 2013, 53: 113031
[33]  1 ITER Physics Expert Group on Confinement and Transport, ITER Physics Expert Group on Confinement Modelling and Database and ITER Physics Basis Editors. Chapter 2: Plasma confinement and transport. Nucl Fusion, 1999, 39: 2175-2250
[34]  2 ITER Physics Expert Group on Disruptions, Plasma Control, and MHD and ITER Physics Basis Editors. Chapter 3: MHD stability, operational limits and disruptions. Nucl Fusion, 1999, 39: 2251-2390
[35]  10 Liu C S, Tripathi V K. Parametric instabilities in a magnetized plasma. Phys Rep, 1986, 130: 143-216
[36]  11 Landau L D. On the vibration of the electronic plasma. J Phys (USSR), 1946, 10: 25-34
[37]  17 Tan Y, Gao Z, He Y X. Analysis and design of the Alfven wave antenna system for the SUNIST spherical tokamak. Fusion Eng Design, 2009, 84: 2064-2071
[38]  25 Elfimov A G, Petrzilka V, Tataronis J A. Radial plasma transport and toroidal current driven by nonresonant ponderomotive forces. Phys Plasmas, 1994, 1: 2882-2889
[39]  31 Chen J, Gao Z. Local nonlinear rf forces in inhomogeneous magnetized plasmas. Phys Plasmas, 2014, 21: 062505
[40]  33 Cesario R, Amicucci L, Calabro G, et al. Lower hybrid current drive at ITER-relevant high plasma densities. AIP Conf Proc, 2009, 1187: 419-422
[41]  34 Kirov K K, Baranov Y, Mailloux J, et al. LH power deposition and CD efficiency studies by application of modulated power at JET. Nucl Fusion, 2010, 50: 075003
[42]  35 Wallace G M, Parker R R, Bonoli P T, et al. Observations of lower hybrid wave absorption in the scrape off layer of a diverted tokamak. AIP Conf Proc, 2009, 1187: 395-398
[43]  36 Ding B J, Kong E H, Li M H, et al. Experimental investigations of LHW-plasma coupling and current drive related to achieving H-mode plasmas in EAST. Nucl Fusion, 2013, 53: 113027
[44]  37 Cesario R, Cardinali A, Castaldo C, et al. Spectral broadening of lower hybrid waves produced by parametric instability in current drive experiments of tokamak plasmas. Nucl Fusion, 2006, 46: 462-476
[45]  39 Cesario R, Amicucci L, Castaldo C, et al. Plasma edge density and lower hybrid current drive in JET. Plasma Phys Contr Fusion, 2011, 51: 085011
[46]  40 Cesario R, Amicucci L, Cardinali A, et al. Current drive at plasma densities required for thermonuclear reactors. Nat Commun, 2010, 1: 55
[47]  41 Fisch N J. Some unsolved challenges in radio-frequency heating and current drive. Fusion Sci Tech, 2014, 65: 79-87
[48]  44 Hassam A B, Antonsen T M, Drake J F, et al. Spontaneous poloidal spin-up of tokamaks and the transition to H-mode. Phys Rev Lett, 1991, 66: 309-312
[49]  45 Rozhansky V, Tendler M. The effect of the radial electric field on the L-H transition in tokamaks. Phys Fluids B, 1992, 4: 1877-1888
[50]  46 Hasegawa A, Wakatani M. Self-organization of electrostatic turbulence in a cylindrical plasma. Phys Rev Lett, 1987, 59: 1581-1584
[51]  47 LeBlanc B P, Bell R E, Bernabei S. Direct observation of ion-Bernstein-wave-induced poloidal flow in TFTR. Phys Rev Lett, 1999, 82: 331-334
[52]  48 Perkins F W, White R B, Bonoli P T, et al. Generation of plasma rotation in a tokamak by ion-cyclotron absorption of fast Alfven waves. Phys Plasmas, 2001, 8: 2181-2187
[53]  49 Jaeger E F, Berry L A, Batchelor D B. Second-order radio frequency kinetic theory with applications to flow drive and heating in tokamak plasmas. Phys Plasmas, 2000, 7: 641-656
[54]  50 Jaeger E F, Berry L A, Batchelor D B. Full-wave calculation of sheared poloidal flow driven by high-harmonic ion Bernstein waves in tokamak plasmas. Phys Plasmas, 2000, 7: 3319-3329
[55]  51 Myra J R, D'lppolito D A. Poloidal force generation by applied radio frequency waves. Phys Plasmas, 2000, 7: 3600-3609
[56]  52 Rice J E, Lee W D, Marmar E S, et al. Observations of anomalous momentum transport in Alcator C-Mod plasmas with no momentum input. Nucl Fusion, 2004, 44: 379-386
[57]  53 Labombard B, Rice J E, Hubbard A E, et al. Transport-driven scrape-off-layer flows and the boundary conditions imposed at the magnetic separatrix in a tokamak plasma. Nucl Fusion, 2004, 44: 1047-1066
[58]  54 Rice J E, Ince-Cushman A, deGrassie J S, et al. Inter-machine comparison of intrinsic toroidal rotation in tokamaks. Nucl Fusion, 2007, 47: 1618-1624
[59]  55 Chang C S, Phillips C K, White R, et al. Generation of plasma rotation by ion cyclotron resonance heating in tokamaks. Phys Plasmas, 1999, 6: 1969-1977
[60]  56 Perkins F W, White R B, Chan V S. On plasma rotation induced by traveling fast Alfven waves. Phys Plasmas, 2002, 9: 511-516
[61]  57 Chan V S, Chiu S C, Omelchenko Y A. Radio-frequency-driven radial current and plasma rotation in a tokamak. Phys Plasmas, 2002, 9: 501-510
[62]  58 Eriksson L G, Porcelli F. Toroidal plasma rotation induced by fast ions without external momentum injection in tokamaks. Nucl Fusion, 2002, 42: 959-971
[63]  59 Rogister A L. A unified theory of transport barriers and of subneoclassical transport. Phys Plasmas, 1999, 6: 200-213
[64]  60 Claassen H A, Gerhauser H, Rogister A, et al. Neoclassical theory of rotation and electric field in high collisionality plasmas with steep gradients. Phys Plasmas, 2000, 7: 3699-3706
[65]  61 Diamond P H, McDevitt C J, Guercan O D, et al. Physics of non-diffusive turbulent transport of momentum and the origins of spontaneous rotation in tokamaks. Nucl Fusion, 2009, 49: 045002
[66]  62 Wang L, Diamond P H. Gyrokinetic theory of turbulent acceleration of parallel rotation in tokamak plasmas. Phys Rev Lett, 2013, 110: 265006
[67]  63 Yan Z, Xu M, Diamond P H, et al. Intrinsic rotation from a residual stress at the boundary of a cylindrical laboratory plasma. Phys Rev Lett, 2010, 104: 065002
[68]  64 Lin Y, Rice J E, Wukitch S J, et al. Observation of ion-cyclotron-frequency mode-conversion flow drive in tokamak plasmas. Phys Rev Lett, 2008, 101: 235002
[69]  65 Rice J E, Ince-Cushman A C, Bonoli P T, et al. Observations of counter-current toroidal rotation in Alcator C-Mod LHCD plasmas. Nucl Fusion, 2009, 49: 025004
[70]  68 Wang S J. Toroidal rotation and radial electric field driven by the lower-hybrid-wave in a tokamak fusion reactor. Phys Plasmas, 2011, 18: 102502
[71]  69 Guan X Y, Qin H, Liu J, et al. On the toroidal plasma rotations induced by lower hybrid waves. Phys Plasmas, 2013, 20: 022502
[72]  70 Lee J, Parra F I, Parker R R, et al. Perpendicular momentum injection by lower hybrid wave in a tokamak. Plasma Phys Contr Fusion, 2012, 54: 125005
[73]  71 Shi Y J, Xu G S, Wang F D, et al. Observation of cocurrent toroidal rotation in the EAST tokamak with lower-hybrid current drive. Phys Rev Lett, 2011, 106: 235001
[74]  72 Rice J E, Podpaly Y A, Reinke M L, et al. Effects of LHRF on toroidal rotation in Alcator C-Mod plasmas. Nucl Fusion, 2013, 53: 093015
[75]  73 Lin Y, Rice J E, Wukitch S J, et al. Observation of ion cyclotron range of frequencies mode conversion plasma flow drive on Alcator C-Mod. Phys Plasmas, 2009, 16: 056102
[76]  74 Seol J, Lee S G, Park B H, et al. Effects of electron-cyclotron-resonance-heating-induced internal kink mode on the toroidal rotation in the KSTAR tokamak. Phys Rev Lett, 2012, 109: 195003
[77]  75 DeGrassie J S, Baker D R, Brennan D, et al. Co-toroidal plasma rotation with electron cyclotron power in DIII-D. AIP Conf Proc, 2001, 595: 294-297
[78]  76 McDermott R M, Angioni C, Dux R, et al. Effect of electron cyclotron resonance heating on toroidal rotation in ASDEX Upgrade H-mode discharges. Plasma Phys Contr Fusion, 2011, 53: 035007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133