全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

短花针茅(Stipabreviflora)功能性状对水热协同作用的敏感性和适应性

DOI: 10.1360/N972014-00008, PP. 3378-3387

Keywords: 增温,降水变化,协同作用,敏感性,适应性,短花针茅

Full-Text   Cite this paper   Add to My Lib

Abstract:

全球变化背景下的温度增加和降水格局变化对植物功能性状影响的研究已有很多,但关于植物功能性状对水热协同变化的敏感性指标及适应阈值研究较少.本研究以荒漠草原典型地带性植物短花针茅为研究对象,通过人工气候箱法模拟研究了其功能性状(生物量特征和形态特征)对温度变化(对照,增温1.5℃,2.0℃,4.0℃,6.0℃)和降水变化(-30%,-15%,对照,+15%,+30%)(以1978~2007年6~8月月均温和月均降水为对照)协同作用的敏感性和适应性.结果表明(i)温度和降水变化对短花针茅各功能性状(除地上生物量和叶数)有极显著的交互作用,生物量特征对水热协同作用的敏感程度大于形态特征,其中最敏感指标为地下生物量.(ii)不同降水条件下短花针茅对温度的适应性不同,表现为总生物量与温度的关系不同,即在降水减少30%时,呈线性减少关系;在降水减少15%时,两者无显著关系;在当前降水及降水增加时,呈二次曲线关系.(iii)未来轻度的气候暖干化(降水弱降低而温度小幅增加)可能有利于短花针茅的生长.

References

[1]  2 Hannah L, Midgley G F, Millar D. Climate change-integrated conservation strategies. Glob Ecol Biogeogr, 2002, 11: 485-495
[2]  5 Xu Z W, Wan S Q, Ren H Y, et al. Effects of water and nitrogen addition on species turnover in temperate grasslands in northern China. PLoS One, 2012, 7: e39762
[3]  8 战伟, 沙伟, 王淼, 等. 降水和温度变化对长白山地区水曲柳幼苗生长和光合参数的影响. 应用生态学报, 2012, 22: 617-624
[4]  9 Kudernatsch T, Fischer A, Bernhardt-R?mermann M, et al. Short-term effects of temperature enhancement on growth and reproduction of alpine grassland species. Basic Appl Ecol, 2008, 9: 263-274
[5]  14 Wu Z, Dijkstra P, Koch G W, et al. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Glob Change Biol, 2011, 17: 927-942
[6]  17 Luo Y, Gerten D, Le Maire G, et al. Modeled interactive effects of precipitation, temperature, and CO2 on ecosystem carbon and water dynamics in different climatic zones. Glob Change Biol, 2008, 14: 1986-1999
[7]  18 He W M, Zhang X S. Responses of an evergreen shrub Sabina vulgaris to soil water and nutrient shortages in the semi-arid Mu Us Sandland in China. J Arid Environ, 2003, 53: 307-316
[8]  22 Xu Z Z, Zhou G S. Responses of photosynthetic capacity to soil moisture gradient in perennial rhizome grass and perennial bunchgrass. BMC Plant Biol, 2011, 11: 21
[9]  23 Schuur E A G. Productivity and global climate revisited: The sensitivity of tropical forest growth to precipitation. Ecology, 2003, 84: 1165-1170
[10]  27 Chapin F S III, Bloom A J, Field C B, et al. Plant responses to multiple environmental factors. BioScience, 1987, 37: 49-57
[11]  34 Sui X H, Zhou G S, Zhuang Q L. Sensitivity of carbon budget to historical climate variability and atmospheric CO2 concentration in temperate grassland ecosystems in China. Clim Change, 2013, 117: 259-272
[12]  35 Yim Y J. Distribution of forest vegetation and climate on the Korean peninsula Ⅲ: Distribution of tree species along the gradient. Jpn J Ecol, 1977, 27: 177-189
[13]  36 洪必恭, 李绍珠. 江苏主要常绿阔叶树种的分布与热最关系的初步研究. 生态学报, 1981, 1: 105-111
[14]  37 Andresen L, Michelsen A, Ambus P, et al. Belowground heathland responses after 2 years of combined warming, elevated CO2 and summer drought. Biogeochemistry, 2010, 101: 27-42
[15]  38 Arnone J A, Jasoni R L, Lucchesi A J, et al. A climatically extreme year has large impacts on C4 species in tallgrass prairie ecosystems but only minor effects on species richness and other plant functional groups. J Ecol, 2011, 99: 678-688
[16]  39 Guo Q, Hu Z M, Li S G, et al. Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: Effects of mean annual precipitation and its seasonal distribution. Glob Change Biol, 2012, 18: 3624-3631
[17]  42 康萨如拉, 牛建明, 张庆, 等. 短花针茅叶片解剖结构及与气候因子的关系. 草业学报, 2013, 1: 77-86
[18]  43 Hoeppner S S, Dukes J S. Interactive responses of old-field plant growth and composition to warming and precipitation. Glob Change Biol, 2011, 18: 1754-1768
[19]  46 Dukes J S, Chiariello N R, Cleland E E, et al. Responses of grassland production to single and multiple global environmental changes. PLoS Biol, 2005, 3: e319
[20]  47 Hou Y, Wang K Y, Zhang C. Effects of elevated CO2 concentration and temperature on nutrient accumulation and allocation in Betula albo-sinensis seedlings. Chin J Appl Ecolo, 2008, 19: 13-19
[21]  50 Wiseman P E, Seiler J R. Soil CO2 efflux across four age classes of plantation loblolly pine (Pinus taeda L.) on the Virginia Piedmont. Forest Ecol Manag, 2004, 192: 297-311
[22]  51 Poorter H, Niklas K J, Reich P B, et al. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol, 2012, 193: 30-50
[23]  56 李翠, 程明, 唐宇丹, 等. 青藏高原2种柳属植物叶片解剖结构和光合特征的比较. 西北植物学报, 2009, 29: 275-282
[24]  57 Li X B, Chen Y H, Zhang Y X, et al. Impact of climate change on desert steppe in northern China. Adv Earth Sci, 2002, 17: 254-261
[25]  58 Lu N, Wilske B, Ni J, et al. Climate change in Inner Mongolia from 1955 to 2005: Rends at regional, biome and local scales. Environ Res Lett, 2009, 4: 045006
[26]  1 IPCC (Intergovernmental Panel On Climate Change). Climate Change 2007: Impacts, Adaptations and Vulnerability. Fourth Assessment Report of Working Group II. Cambridge, Cambridge: University Press, 2007
[27]  3 Zhang X B, Zwiers F W, Hegerl G C, et al. Detection of human influence on twentieth century precipitation trends. Nature, 2007, 448: 461-465
[28]  4 Barnabás B, J?ger K, Fehér A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ, 2008, 31: 11-38
[29]  6 Craine J M, Tilman D , Wedin D, et al. Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Funct Ecol, 2002, 16: 563-574
[30]  7 de Bello F, Lavorel S, Díaz S, et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv, 2010, 19: 2873-2893
[31]  10 Wang Z, Hao X Y, Shan D, et al. Influence of increasing temperature and nitrogen input on greenhouse gas emissions from a desert steppe soil in Inner Mongolia. Soil Sci Plant Nutr, 2011, 57: 508-518
[32]  11 Zavalloni C, Vicca S, Büscher M, et al. Exposure to warming and CO2 enrichment promotes greater above-ground biomass, nitrogen, phosphorus and arbuscular mycorrhizal colonization in newly established grasslands. Plant Soil, 2012, 359: 121-136
[33]  12 Xu X, Niu S, Sherry R A, et al. Interannual variability in responses of belowground net primary productivity (NPP) and NPP partitioning to long-term warming and clipping in a tallgrass prairie. Glob Change Biol, 2012, 18: 1648-1656
[34]  13 Xu Z Z, Shimizu H, Ito S, et al. Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland. Planta, 2014, 239: 421-435
[35]  15 Xu X, Sherry R A, Niu S L, et al. Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Glob Change Biol, 2013, 19: 2753-2764
[36]  16 Fan J W, Wang K, Harris W, et al. Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia. J Arid Environ, 2009, 73: 521-528
[37]  19 Xu Z Z, Zhou G S. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus Chinesis. Planta, 2006, 224: 1080-1090
[38]  20 Bai Y F, Han X G, Wu J G, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431: 181-184
[39]  21 戴声佩, 张勃, 王强, 等. 祁连山草地植被NDVI 变化及其对气温降水的旬响应特征. 资源科学, 2010, 32: 1769-1776
[40]  24 Luo T, Pan Y, Ouyang H, et al. Leaf area index and net primary productivity along subtropical to alpine gradients in the Tibetan Plateau. Glob Ecol Biogeogr, 2004, 13: 345-358
[41]  25 Zhou G S, Wang Y H, Wang S P. Responses of grassland ecosystems to precipitation and land use along the Northeast China transect. J Veg Sci, 2002, 13: 361-368
[42]  26 Williams A M, Wills K E, Janes J K, et al. Warming and free-air CO2 enrichment alter demographics in four co-occurring grassland species. New Phytol, 2007, 176: 365-374
[43]  28 Sapeta H, Costa J M, Louren?o T, et al. Drought stress response in Jatropha curcas: Growth and physiology. Environ Exp Bot, 2013, 85: 76-84
[44]  29 Han F, Miao B L, Guo R Q, et al. Spatial-temporal evolvement characteristics of climate productivity for the plants on Inner Mongolia desert steppe. Meteorol Env R, 2010, 1: 76-79
[45]  30 Xia J Y, Wan S Q. The effects of warming-shifted plant phenology on ecosystem carbon exchange are regulated by precipitation in a semi-arid grassland. PLoS One, 2012, 7: e32088
[46]  31 Berry J, Bj?rkman O. Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Phys, 1980, 31: 491-543
[47]  32 Fan J W, Zhong H P, Harris W, et al. Carbon storage in the grasslands of China based on field measurements of above-and belowground biomass. Clim Change, 2008, 86: 375-396
[48]  33 Yang F L, Zhou G S. Sensitivity of temperate desert steppe carbon exchange to seasonal droughts and precipitation variations in Inner Mongolia, China. PLoS One, 2013, 8: e55418
[49]  40 Fuhrer J. Agroecosystem responses to combinations of elevated CO2, ozone and global climate change. Agr Ecosyst Environ, 2003, 97: 1-20
[50]  41 Yang Y, Wang G X, Yang L D, et al. Effects of drought and warming on biomass, nutrient allocation, and oxidative stress in Abies fabri in eastern Tibetan plateau. J Plant Growth Regul, 2012, 32: 298-306
[51]  44 Qaderi M M, Kurepin L V, Reid D M. Effects of temperature and watering regime on growth, gas exchange and abscisic acid content of canola (Brassica napus) seedlings. Environ Exp Bot, 2012, 75: 107-113
[52]  45 董丽佳, 桑卫国. 模拟增温和降水变化对北京东灵山辽东栎种子出苗和幼苗生长的影响. 植物生态学报, 2012, 36: 819-830
[53]  48 李合生. 现代植物生理学. 北京: 高等教育出版社, 2006. 334-357
[54]  49 Bret-Harte M S, Shaver G R, Zoerner J P, et al. Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment. Ecology, 2001, 82: 18-32
[55]  52 Yang Y H, Fang J Y, Mai W H, et al. Large-scale pattern of biomass partitioning across China’s grasslands. Glob Ecol Biogeogr, 2010, 19: 268-277
[56]  53 Adams H D, Guardiola-Claramonte M, Barron-Gafford G A, et al. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc Natl Acad Sci USA, 2009, 106: 7063-7066
[57]  54 Bai E, Li S L, Xu W H, et al. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol, 2013, 199: 441-451
[58]  55 De Boeck H J, Lemmens C M H M, Zavalloni C, et al. Biomass production in experimental grasslands of different species richness during three years of climate warming. Biogeosciences, 2008, 5: 585-594

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133