全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

弄岗喀斯特季节性雨林枯立木多度的空间分布及影响因子

DOI: 10.1360/972014-00421, PP. 3479-3490

Keywords: 零膨胀模型,负二项分布,空间自相关,地形因子,群落类型

Full-Text   Cite this paper   Add to My Lib

Abstract:

枯立木(standingdeadtree)是森林的重要结构组成部分.对枯立木空间格局与其影响因子等进行探讨,有助于揭示森林树木死亡机理及森林群落动态规律.本研究将弄岗喀斯特季节性雨林15hm2样地内胸径大于1cm的枯立木划分为不同胸径等级,并在不同空间尺度上统计了枯立木多度、空间相邻因子、地形因子及群落类型因子等数据,用零膨胀负二项模型(zero-inflatednegativebinomialmodels)解决了多度数据的非正态性且零值过多等统计问题,分析了该森林枯立木多度的空间分布规律及影响因子.结果表明(ⅰ)弄岗15hm2样地内胸径大于1cm的枯立木有2254株,平均胸径6.21cm,最大胸径61.86cm;胸径分布呈反"J"型,无明显断层;小径级枯立木在海拔较高地区分布较多,大径级枯立木在海拔较低地区分布较多;(ⅱ)小径级枯立木呈聚集型空间格局,大径级枯立木趋向于随机型空间格局;枯立木多度存在多尺度的空间自相关结构;(ⅲ)随着径级增大,枯立木多度与凹凸度、空间相邻因子的相关性逐渐减弱,与坡度、海拔的相关性逐渐增强;随着单位取样尺度增大,枯立木多度与凹凸度、海拔、坡度、群落类型因子的相关性逐渐减弱,与空间相邻因子相关性逐渐增强.研究表明,喀斯特森林中枯立木分布格局由多尺度的空间结构所构成,不同空间尺度、地形条件、群落类型等对枯立木的径级结构及数量组成有显著影响,而枯立木结构的空间异质性将会影响森林光资源及木质残体储量等的空间动态,进而影响群落物种组成.

References

[1]  39 R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2013. http: //www.R-project.org/
[2]  40 Jackman S. pscl: Classes and Methods for R Developed in the Political Science Computational Laboratory, Stanford University. Department of Political Science, Stanford University. Stanford, California. R package version 1.04.4, 2012. http: //pscl.stanford.edu/
[3]  1 Franklin J F, Shugart H H, Harmon M E. Tree death as an ecological process. Bioscience, 1987, 37: 550-556
[4]  12 Carmona M R, Armesto J J, Aravena J C, et al. Coarse woody debris biomass in successional and primary temperate forests in Chiloé Island, Chile. Forest Ecol Manag, 2002, 164: 265-275
[5]  19 Wang Z G, Ye W H, Cao H L, et al. Species-topography association in a species-rich subtropical forest of China. Basic Appl Ecol, 2009, 10: 648-655
[6]  25 郭福涛, 胡海清, 金森, 等. 基于负二项和零膨胀负二项回归模型的大兴安岭地区雷击火与气象因素的关系. 植物生态学报, 2010, 34: 571-577
[7]  26 张雄清, 雷渊才, 雷相东, 等. 基于计数模型方法的林分枯损研究. 林业科学, 2012, 48: 54-61
[8]  28 李先琨, 苏宗明, 吕仕洪, 等. 广西岩溶植被自然分布规律及对岩溶生态恢复重建的意义. 山地学报, 2003, 21: 129-139
[9]  29 郭柯, 刘长成, 董鸣. 我国西南喀斯特植物生态适应性与石漠化治理. 植物生态学报, 2011, 35: 991-999
[10]  30 王斌, 黄俞淞, 李先琨, 等. 弄岗北热带喀斯特季节性雨林15 ha监测样地的树种组成与空间分布. 生物多样性, 2014, 22: 141-156
[11]  31 黄俞淞, 吴望辉, 蒋日红, 等. 广西弄岗国家级自然保护区植物物种多样性初步研究. 广西植物, 2013, 33: 346-355
[12]  32 黄甫昭, 王斌, 丁涛, 等. 弄岗北热带喀斯特季节性雨林群丛数量分类及与环境的关系. 生物多样性, 2014, 22: 157-166
[13]  33 苏宗明, 赵天林, 黄庆昌, 等. 弄岗自然保护区植被调查报告. 广西植物, 1988, 增刊1: 185-214
[14]  38 Borcard D, Gillet F, Legendre P, 著. 赖江山, 译. 数量生态学-R语言应用. 北京: 高等教育出版社, 2014. 206-208
[15]  2 Schmitt C L, Filip G M. Understanding and defining mortality in western conifer forests. West J Appl For, 2007, 22: 105-115
[16]  3 王利伟, 李步杭, 叶吉, 等. 长白山阔叶红松林树木短期死亡动态. 生物多样性, 2011, 19: 260-270
[17]  4 Metcalf C J E, Horvitz C C, Tuljapurkar S, et al. A time to grow and a time to die: A new way to analyze the dynamics of size, light, age, and death of tropical trees. Ecology, 2009, 90: 2766-2778
[18]  5 Harms K E, Condit R, Hubbell S P, et al. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. J Ecol, 2001, 89: 947-959
[19]  6 Liu D, Kelly M, Gong P, et al. Characterizing spatial-temporal tree mortality patterns associated with a new forest disease. Forest Ecol Manag, 2007, 253: 220-231
[20]  7 Gray L, He F. Spatial point-pattern analysis for detecting density-dependent competition in a boreal chronosequence of Alberta. Forest Ecol Manag, 2009, 259: 98-106
[21]  8 Legendre P, Mi X C, Ren H B, et al. Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 2009, 90: 3663-3674
[22]  9 陈华, 徐振邦. 长白山红松针阔混交林林木死亡的初步研究. 应用生态学报, 1991, 10: 89-91
[23]  10 班勇, 徐化成, 李湛东. 兴安落叶松老龄林落叶松林木死亡格局以及倒木对更新的影响. 应用生态学报, 1997, 8: 449-454
[24]  11 周小勇, 黄忠良, 史军辉, 等. 鼎湖山针阔混交林演替过程中群落组成和结构短期动态研究. 热带亚热带植物学报, 2004, 12: 323-330
[25]  13 Rouvinen S, Kuuluvainen T, Siitonen J. Tree mortality in a Pinus sylvestris dominated boreal forest landscape in Vienansalo wilderness, eastern Fennoscandia. Silva Fenn, 2002, 36: 127-145
[26]  14 刘妍妍, 金光泽. 地形对小兴安岭阔叶红松林粗木质残体分布的影响. 生态学报, 2009, 29: 1398-1407
[27]  15 杨礼攀, 刘文耀, 杨国平, 等. 哀牢山湿性常绿阔叶林和次生林木质物残体的组成与碳贮量. 应用生态学报, 2007, 18: 2153-2159
[28]  16 Lutz J A, Halpern C B. Tree mortality during early forestdevelopment: A long-term study of rates, causes, and consequences. Ecol Monogr, 2006, 76: 257-275
[29]  17 Guisan A, Zimmermann N E. Predictive habitat distribution models in ecology. Ecol Model, 2000, 135: 147-186
[30]  18 张金屯. 数量生态学. 北京: 科学出版社, 2011
[31]  20 Keitt T H, Biornstad O N, Dixon P M, et al. Accounting for spatial pattern when modeling organism-environment interactions. Ecography, 2002, 23: 616-625
[32]  21 Legendre P. Spatial autocorrelation: Trouble or a new paradigm? Ecology, 1993, 74: 1659-1673
[33]  22 Bolker B M, Gardener B, Maunder M. Strategies for fitting nonlinear ecological models in R, AD Model Builder, and BUGS. Methods Ecol Evol, 2013, 4: 501-512
[34]  23 Mullahy J. Specification and testing of some modified count data models. J Econometrics, 1986, 33: 341-365
[35]  24 Zuur A F, Leno E N, Walker N J, et al. Mixed Effects Models and Extensions in Ecology with R. New York: Springer, 2009
[36]  27 Cushman S A, McGarigal K. Patterns in the species-environment relationship depend on both scale and choice of response variables. Oikos, 2004, 105: 117-124
[37]  34 梁畴芬, 梁建英, 刘兰芳, 等. 弄岗自然保护区植物区系考察报告. 广西植物, 1988, 增刊1: 83-101
[38]  35 Condit R. Research in large, long-term tropical forest plots. Trends Ecol Evol, 1995, 10: 18-23
[39]  36 Blackman G E. Statistical and ecological studies in the distribution of species in plant communities. I. Dispersion as a factor in the study of changes in plant populations. Ann Bot, 1942, 6: 351-287
[40]  37 李先琨, 黄玉清, 苏宗明. 元宝山南方红豆杉种群分布格局及动态. 应用生态学报, 2000, 11: 168-172

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133