全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

拓扑绝缘体与量子反常霍尔效应

DOI: 10.1360/N972014-00938, PP. 3431-3441

Keywords: 量子反常霍尔效应,量子霍尔效应,拓扑绝缘体,磁性掺杂

Full-Text   Cite this paper   Add to My Lib

Abstract:

量子霍尔效应是一种可以在宏观尺度出现的量子现象,由二维电子系统在强磁场下所具有的独特拓扑性质所引起.长期以来人们一直希望能够实现不需外磁场的量子霍尔效应,以便将其应用于低能耗电学器件.磁性拓扑绝缘体薄膜可能具有的量子化的反常霍尔效应即是一种可以在零磁场下出现的量子霍尔效应.本文介绍了拓扑绝缘体和量子反常霍尔效应的概念发展及量子反常霍尔效应如何在磁性掺杂拓扑绝缘体中实验实现,并探讨了量子反常霍尔效应在低能耗器件方面的应用前景.

References

[1]  1 Hall E H. On a new action of the magnet on electric currents. Amer J Math, 1879, 2: 287-292
[2]  2 Klitzing K V, Dorda G, Peper M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys Rev Lett, 1980, 45: 494-497
[3]  8 Nagaosa N, Sinova J, Onoda S, et al. Anomalous Hall effect. Rev Mod Phys, 2010, 82: 1539-1592
[4]  9 Hasan M Z, Kane C L. Topological insulators. Rev Mod Phys, 2010, 82: 3045-2067
[5]  10 Qi X L, Zhang S C. Topological insulators and superconductors. Rev Mod Phys, 2011, 83: 1057-1110
[6]  11 Zuti? I, Fabian J, Das Sarma S. Spintronics: Fundamentals and applications. Rev Mod Phys, 2004, 76: 323-410
[7]  12 Kane C L, Mele E J. Quantum spin Hall effect in graphene. Phys Rev Lett, 2005, 95: 226801
[8]  13 Kane C L, Mele E J. Z2 topological order and the quantum spin Hall effect. Phys Rev Lett, 2005, 95: 146802
[9]  14 Bernevig B A, Zhang S C. Quantum spin Hall effect. Phys Rev Lett, 2006, 96: 106802
[10]  15 Yao Y, Ye F, Qi X L, et al. Spin-orbit gap of graphene: First-principles calculations. Phys Rev B, 2007, 75: 041401(R)
[11]  16 Min H, Hill J E, Sinitsyn N A, et al. Intrinsic and Rashba spin-orbit interactions in graphene sheets. Phys Rev B, 2006, 74: 165310
[12]  17 Bernevig B A, Hughes T L, Zhang S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 2006, 314: 1757-1761
[13]  18 K?nig M, Wiedmann S, Brüne C, et al. Quantum spin Hall insulator state in HgTe quantum wells. Science, 2007, 318: 766-770
[14]  19 Roth A, Brüne C, Buhmann H, et al. Nonlocal transport in the quantum spin Hall state. Science, 2009, 325: 294-297
[15]  20 Liu C X, Hughes T L, Qi X L, et al. Quantum spin Hall effect in inverted type-Ⅱ semiconductors. Phys Rev Lett, 2008, 100: 236601
[16]  21 Knez I, Du R R, Sullivan G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys Rev Lett, 2011, 107: 136603
[17]  22 Fu L, Kane C L, Mele E J. Topological insulators in three dimensions. Phys Rev Lett, 2007, 98: 106803
[18]  23 Moore J E, Balents L. Topological invariants of time-reversal-invariant band structures. Phys Rev B, 2007, 75: 121306(R)
[19]  24 Roy R. Topological phases and the quantum spin Hall effect in three dimensions. Phys Rev B, 2009, 79: 195322
[20]  26 Hsieh D, Qian D, Wray L, et al. A topological Dirac insulator in a quantum spin Hall phase. Nature, 2008, 452: 970-974
[21]  27 Zhang H, Liu C X, Qi X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys, 2009, 5: 438-442
[22]  28 Xia Y, Qian D, Hsieh D, et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat Phys, 2009, 5: 398-402
[23]  29 Chen Y L, Analytis J G, Chu J H, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science, 2009, 325: 178-181
[24]  31 Song C L, Wang Y L, Jiang Y P, et al. Topological insulator Bi2Se3 thin films grown on double-layer graphene by molecular beam epitaxy. Appl Phys Lett, 2010, 97: 143118
[25]  32 Zhang Y, He K, Chang C Z, et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat Phys, 2010, 6: 584-588
[26]  39 Liu C X, Qi X L, Dai X, et al. Quantum anomalous Hall effect in Hg1-yMnyTe quantum wells. Phys Rev Lett, 2008, 101: 146802
[27]  43 Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287: 1019-1022
[28]  46 Buhmann H. Towards the quantum anomalous Hall effect in HgMnTe. Bull Amer Phys Soc, 2012, 57: P27.1
[29]  47 Chien Y J. Transition metal-doped Sb2Te3 and Bi2Te3 diluted magnetic semiconductors. Dissertation of Doctoral Degree. Michigan: University of Michigan, 2007
[30]  48 Hor Y S, Roushan P, Beidenkopf H, et al. Development of ferromagnetism in the doped topological insulator Bi2-xMnxTe3. Phys Rev B, 2010, 81: 195203
[31]  49 Chen Y L, Chu J H, Analytis J G, et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science, 2010, 329: 659-662
[32]  50 Xu S Y, Neupane M, Liu C, et al. Hedgehog spin texture and Berry's phase tuning in a magnetic topological insulator. Nat Phys, 2012, 8: 616-622
[33]  51 Checkelsky J G, Ye J, Onose Y, et al. Dirac-Fermion-mediated ferromagnetism in a topological insulator. Nat Phys, 2012, 8: 729-733
[34]  52 Chang C Z, Zhang J, Liu M, et al. Thin films of magnetically doped topological insulator with carrier-independent long-range ferromagnetic order. Adv Mater, 2013, 25: 1065-1070
[35]  53 Chang C Z, Tang P, Wang Y L, et al. Chemical-potential-dependent gap opening at the Dirac surface states of Bi2Se3 induced by aggregated substitutional Cr atoms. Phys Rev Lett, 2014, 112: 056801
[36]  59 Wang J, Lian B, Zhang H, et al. Quantum anomalous Hall effect with higher plateaus. Phys Rev Lett, 2013, 111: 136801
[37]  60 Xu G, Weng H, Wang Z, et al. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys Rev Lett, 2010, 107: 186806
[38]  61 Wan X, Turner A M, Vishwanath A, et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys Rev B, 2011, 83: 205101
[39]  62 Burkov A A, Balents L. Weyl semimetal in a topological insulator multilayer. Phys Rev Lett, 2011, 107: 127205
[40]  3 Tsui D C, Stormer H L, Gossard A C. Two-dimensional magnetotransport in the extreme quantum limit. Phys Rev Lett, 1982, 48: 1559-1562
[41]  4 Avron J E, Osadchy D, Seiler R. A topological look at the quantum Hall effect. Phys Today, 2003, 56: 38-42
[42]  5 Thouless D J, Kohmoto M, Nightingale M P, et al. Quantized Hall conductance in a two-dimensional periodic potential. Phys Rev Lett, 1982, 49: 405-408
[43]  6 Haldane F D M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly". Phys Rev Lett, 1988, 61: 2015-2018
[44]  7 Hall E H. On the "rotational coefficient" in nickel and cobalt. Philo Mag, 1881, 12: 157-172
[45]  25 Fu L, Kane C L. Topological insulators with inversion symmetry. Phys Rev B, 2007, 76: 045302
[46]  30 Li Y Y, Wang G, Zhu X G, et al. Intrinsic topological insulator Bi2Te3 thin films on Si and their thickness limit. Adv Mater, 2010, 22: 4002-4007
[47]  33 Wang G, Zhu X G, Wen J, et al. Atomically smooth ultrathin films of topological insulator Sb2Te3. Nano Res, 2010, 3: 874-880
[48]  34 Liu C X, Zhang H J, Yan B H, et al. Oscillatory crossover from two-dimensional to three-dimensional topological insulators. Phys Rev B, 2010, 81: 041307
[49]  35 Dai X, Hughes T L, Qi X L, et al. Helical edge and surface states in HgTe quantum wells and bulk insulators. Phys Rev B, 2008, 77: 125319
[50]  36 Brüne C, Liu C X, Novik E G, et al. Quantum Hall effect from the topological surface states of strained bulk HgTe. Phys Rev Lett, 2011, 106: 126803
[51]  37 Yan B, Zhang S C. Topological materials. Rep Prog Phys, 2012, 75: 096501
[52]  38 Qi X L, Wu Y S, Zhang S C. Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors. Phys Rev B, 2006, 74: 085308
[53]  40 Qi X L, Hughes T L, Zhang S C. Topological field theory of time-reversal invariant insulators. Phys Rev B, 2008, 78: 195424
[54]  41 Yu R, Zhang W, Zhang H, et al. Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329: 61-64
[55]  42 Nomura K, Nagaosa N. Surface-quantized anomalous Hall current and the magnetoelectric effect in magnetically disordered topological insulators. Phys Rev Lett, 2011, 106: 166802
[56]  44 Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281: 951-956
[57]  45 Liu Q, Liu C X, Xu C, et al. Magnetic impurities on the surface of a topological insulator. Phys Rev Lett, 2009, 102: 156603
[58]  54 Zhang J, Chang C Z, Tang P Z, et al. Topology-driven magnetic quantum phase transition in topological insulators. Science, 2013, 339: 1582-1586
[59]  55 Zhang J, Chang C Z, Zhang Z C, et al. Band structure engineering in (Bi1-xSbx)2Te3 ternary topological insulators. Nat Commun, 2011, 2: 574
[60]  56 Kong D, Chen Y, Cha J J, et al. Ambipolar field effect in the ternary topological insulator (BixSb1-x)2Te3 by composition tuning. Nat Nanotechnol, 2011, 6: 705-709
[61]  57 Chen J, Qin H J, Yang F, et al. Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3. Phys Rev Lett, 2010, 105:176602
[62]  58 Chang C Z, Zhang J, Feng X, et al. Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science, 2013, 340: 167-170

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133