全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

青藏高原中部大气水汽稳定同位素捕捉到印度洋台风“费林”信号

DOI: 10.1360/N972014-00601, PP. 3526-3532

Keywords: 青藏高原,大气水汽,稳定同位素,印度洋,台风“费林”

Full-Text   Cite this paper   Add to My Lib

Abstract:

大气水汽稳定同位素的变化不仅在长时间尺度上与气候因子相关,而且对于极端天气事件也十分敏感.本文通过分析青藏高原中部那曲地区大气水汽δ18O变化,发现2013年10月15~16日在印度洋台风“费林”爆发期间,大气水汽δ18O达极低值-42.1‰,平均值低于一般值16.6‰.大气水汽同位素与同期气象观测结果对比分析表明该极低值与水汽来源相关.TRMM卫星日降水量分布及水汽反向追踪模型结果显示,该水汽来源于南部的孟加拉湾.这表明即使在季风结束期,印度洋水汽可以通过极端天气事件影响到青藏高原;这也表明极端天气事件有可能通过稳定同位素信号影响不同介质的稳定同位素记录.

References

[1]  6 Tian L D, Yao T D, Schuster P F, et al. Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau. J Geophys Res, 2003, 108: 4293-4302
[2]  7 Yu W S, Yao T D, Lewis S, et al. Stable oxygen isotope differences between the areas to the north and south of Qinling Mountains in China reveal different moisture sources. Int J Climatol, 2014, 34: 1760-1772
[3]  8 Tian L D, Yao T D, Numaguti A, et al. Stable isotope variations in monsoon precipitation on the Tibetan Plateau. J Meteorol Soc Jpn, 2001, 79: 959-966
[4]  9 田立德, 姚檀栋, Numaguti A, 等. 青藏高原南部季风降水中稳定同位素波动与水汽输送过程. 中国科学D辑: 地球科学, 2001, 31(Suppl): 215-220
[5]  12 Yao T D, Masson-Delmotte V, Gao J, et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev Geophys, 2013, 51: 525-548
[6]  14 Thompson L G, Yao T D, Mosley-Thompson E, et al. A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science, 2000, 289: 1916-1919
[7]  15 Yao T D, Li Z X, Thompson L G, et al. δ18O records from Tibetan ice cores reveal differences in climatic changes. Ann Glaciol, 2006, 43: 1-7
[8]  16 Pang H X, Hou S G, Kaspari S, et al. Atmospheric circulation change in the central Himalayas indicated by a high-resolution ice core deuterium excess record. Clim Res, 2012, 53: 1-12
[9]  25 Lawrence J R, Gedzelman S D. Low stable isotope ratios of tropical cyclone rains. Geophys Res Lett, 1996, 23: 527-530
[10]  26 Gedzelman S, Lawrence J, Gamache J, et al. Probing hurricanes with stable isotopes of rain and water vapor. Mon Weather Rev, 2003, 131: 1112-1127
[11]  27 Coplen T B, Neiman P J, White A B, et al. Extreme changes in stable hydrogen isotopes and precipitation characteristics in a landfalling pacific storm. Geophys Res Lett, 2008, 35: L21808, doi: 10.1029/2008gl035481
[12]  28 Fudeyasu H, Ichiyanagi K, Sugimoto A, et al. Isotope ratios of precipitation and water vapor observed in Typhoon Shanshan. J Geophys Res, 2008, 113: D12113, doi: 10.1029/2007jd009313
[13]  33 Miller D L, Mora C I, Grissino-Mayer H D, et al. Tree-ring isotope records of tropical cyclone activity. Proc Natl Acad Sci USA, 2006, 103: 14294-14297
[14]  34 段旭, 陶云, 寸灿琼, 等. 孟加拉湾风暴时空分布和活动规律统计特征. 高原气象, 2009, 28: 634-641
[15]  36 田立德, 姚檀栋, 文蓉, 等. 青藏高原西部纳木那尼冰芯同位素记录的气候意义初探. 第四纪研究, 2012, 32: 46-52
[16]  1 姚檀栋, 丁良福, 蒲健辰, 等. 青藏高原唐古拉山地区降雪中δ18O特征及其与水汽来源的关系. 科学通报, 1991, 20: 1570-1573
[17]  2 Dansgaard W. Stable isotopes in precipitation. Tellus, 1964, 16: 436-468
[18]  3 Tian L D, Masson-Delmotte V, Stievenard M, et al. Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J Geophys Res, 2001, 106: 28081-28088
[19]  4 Tian L D, Yao T D, MacClune K, et al. Stable isotopic variations in west China: A consideration of moisture sources. J Geophys Res, 2007, 112: D10112, doi: 10.1029/2006JD007718
[20]  5 章新平, 姚檀栋, 中尾正义, 等. 青藏高原及其毗邻地区降水中稳定同位素成分的经向变化. 冰川冻土, 2002, 24: 245-253
[21]  10 章新平, 姚檀栋. 影响青藏高原的天气系统与降水中氧同位素的关系. 冰川冻土, 1995, 17: 125-131
[22]  11 章新平, 施雅风, 姚檀栋. 青藏高原东北部降水中δ18O的变化特征. 中国科学B辑, 1995, 25: 540-547
[23]  13 Yao T D, Thompson L G, Mosley-Thompson E, et al. Climatological significance of δ18O in north Tibetan ice cores. J Geophys Res, 1996, 101: 29531-29537
[24]  17 Jacob H, Sonntag C. An 8-year record of the seasonal variation of 2H and 18O in atmospheric water vapour and precipitation at Heidelberg, Germany. Tellus Ser B-Chem Phys Meteorol, 1991, 43: 291-300
[25]  18 Wen X F, Sun X M, Zhang S C, et al. Continuous measurement of water vapor D/H and 18O/16O isotope ratios in the atmosphere. J Hydrol, 2008, 349: 489-500
[26]  19 Angert A, Lee J E, Yakir D. Seasonal variations in the isotopic composition of near-surface water vapour in the eastern Mediterranean. Tellus Ser B-Chem Phys Meteorol, 2008, 60: 674-684
[27]  20 Steen-Larsen H C, Johnsen S J, Masson-Delmotte V, et al. Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet. Atmos Chem Phys, 2013, 13: 4815-4828
[28]  21 Yamanaka T, Shimizu R. Spatial distribution of deuterium in atmospheric water vapor: Diagnosing sources and the mixing of atmospheric moisture. Geochim Cosmochim Acta, 2007, 71: 3162-3169
[29]  22 余武生, 姚檀栋, 田立德, 等. 那曲河流域季风结束前后大气水汽中δ18O变化特征. 科学通报, 2006, 51: 194-199
[30]  23 尹常亮, 姚檀栋, 田立德, 等. 德令哈大气水汽中δ18O的时间变化特征——以2005年7月~2006年2月为例. 中国科学D辑: 地球科学, 2008, 38: 723-731
[31]  24 Liu Z F, Yoshimura K, Kennedy C D, et al. Water vapor δD dynamics over China derived from sciamachy satellite measurements. Sci China Ser D-Earth Sci, 2014, 57: 813-823
[32]  29 Good S P, Mallia D V, Lin J C, et al. Stable isotope analysis of precipitation samples obtained via crowdsourcing reveals the spatiotemporal evolution of Superstorm Sandy. PloS One, 2014, 9: e91117, doi: 10.1371/journal.pone.0091117
[33]  30 Liu Z F, Tian L D, Yao T D, et al. Characterization of precipitation δ18O variation in Nagqu, central Tibetan Plateau and its climatic controls. Theor Appl Climatol, 2010, 99: 95-104
[34]  31 Lawrence J R. Tropical ice core isotopes: Do they reflect changes in storm activity? Geophys Res Lett, 2003, 30: 1072, doi: 10.1029/2002gl015906
[35]  32 Frappier A B, Sahagian D, Carpenter S J, et al. Stalagmite stable isotope record of recent tropical cyclone events. Geology, 2007, 35: 111-114
[36]  35 吕爱民, 文永仁, 李英. 一次孟加拉湾风暴Akash(0701)对我国西南地区强降水过程的影响分析. 大气科学, 2013, 37: 160-170

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133