全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

基于树木年轮信息的宝天曼不同径级华山松碳储量动态变化

DOI: 10.1360/N972014-00403, PP. 3499-3507

Keywords: 华山松,树木年轮,不同径级,碳储量,动态变化

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于树木年轮学方法,本文分3个不同径级研究了宝天曼自然保护区华山松碳储量的动态变化.研究发现(1)随着径级的增大,小径级A(DBH≤15cm)、中径级B(1525cm)华山松碳储量分别为2.757,9.211,15.408t/hm2,它们年均增加的碳储量分别为0.0685,0.1535,0.136t/hm2;(2)中径级华山松林分密度和径向生长量最大,其年均碳储量增长量大于大径级华山松和小径级华山松;(3)大径级华山松每年碳储量增长量决定着华山松林总碳储量的变化.个体死亡率是限制中小径级华山松碳储量增长的重要因素,树木生理生长的影响是限制大径级华山松碳储量增加的主要因素.研究结果表明,利用树木年代学序列能较好地探讨宝天曼华山松生长趋势和评估碳储量的动态变化.

References

[1]  2 Emily M, Payen R, Rohweder M, et al. Pilot Analysis of Global Ecosystem: Forest Ecosystems. World Resource Institute, 2000
[2]  3 张远东, 刘彦春, 刘世荣, 等. 基于年轮分析的不同恢复途径下森林乔木层生物量和蓄积量的动态变化. 植物生态学报, 2012, 36: 117-125
[3]  6 Cao M K, Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 1998, 393: 249-252
[4]  7 Gong P. Progression of RS-ecometrics. J Nat Resour, 1999, 14: 51-54
[5]  12 Hunt E R J, Martin F, Running S. Simulating the effects of climatic variation on stem carbon accumulation of a Pinus ponderosa stand: Comparison with annual growth increment data. Tree Physiol, 1991, 9: 161-171
[6]  13 Krakauer N Y, Randerson J T. Do volcanic eruptions enhance or diminish net primary production? Evidence from tree rings. Glob Biogeochem Cycles, 2003, 17: 1118
[7]  14 Cheikh M, Sophan C, Bienvenu S, et al. Potential of dendrochronology to assess annual rates of biomass productivity in savanna trees of West Africa. Dendrochronologia, 2013, 31: 45-51
[8]  15 邵全琴, 杨海军, 刘纪远, 等. 基于树木年轮信息的江西千烟洲人工林碳蓄积分析. 地理学报, 2009, 64: 69-83
[9]  18 Aide T M, Zimmerman J K, Pascarella J B, et al. Forest regeneration in a chronosequence of tropical abandoned pastures: Implications for restoration ecology. Restorat Ecol, 2000, 8: 328-338
[10]  19 Chazdon R L, Letcher S G, Breugel V M, et al. Rates of change in tree communities of secondary neotropical forests following major disturbances. Phil Transact R Soc Lond Ser B Biol Sci, 2007, 362: 273-289
[11]  23 Fritts H C. Tree Rings and Climate. London: Academic Press, 1976
[12]  24 方艾. 华山松林. 见: 《河南森林》编辑委员会, 编. 河南森林. 北京: 中国林业出版社, 2000
[13]  25 陈存根. 秦岭华山松林生产力的研究华山松林乔木层的生产量. 西北林学院学报, 1984, 1: 1-18
[14]  32 方精云, 刘国华, 徐嵩龄. 我国森林植被的生物量和净生产量. 生态学报, 1996, 16: 497-508
[15]  41 Ryan M G, Phillips N, Bond B J. The hydraulic limitation hypothesis revisited. Plant Cell Environ, 2006, 29: 367-381
[16]  1 IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Agriculture, Forestry and Other Land Use, vol. 4. National Greenhouse Gas InventoriesProgramme, IGES, Japan. 2006
[17]  4 Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292: 2320-2322
[18]  5 Liu Y F, Yu G R, Wen X F, et al. Seasonal dynamics of CO2 fluxes from sub-tropical plantation coniferous ecosystem. Sci China Ser D, 2006, 49(Suppl): 99-109
[19]  8 Bouriaud O, Brdda N, Dupouey J L, et al. Is ring width a reliable proxy for stem-biomass increment? A case study in European beech. Can J Forest Res, 2005, 35: 2920-2933
[20]  9 Fritts H C. Reconstruction Large-Scale Climatic Patterns from Tree-Ring Data. Tucson, USA: The Uiversity of Arizona Press, 1991
[21]  10 Brienen R J W, Zuidema P A, The use of tree rings in tropical forest management: Projecting timber yields of four Bolivian tree species. Forest Ecol Manag, 2006, 226: 256-267
[22]  11 Hasenaur H, Nemani R R, Schadauer K, et a1. Forest growth response to hanging climate between 1961 and 1990 in Austria. Forest Ecol Manag, 1999, 122: 209-219
[23]  16 Liu Y, Zhang Y, Liu S. Aboveground carbon stock evaluation with different restoration approaches using tree ring chronosequences in Southwest China. Forest Ecol Manag, 2012, 263: 39-46
[24]  17 张远东, 刘彦春, 刘世荣, 等. 基于年轮分析的不同恢复途径下森林乔木层生物量和蓄积量的动态变化. 植物生态学报, 2012, 36: 117-125
[25]  20 Saldarriaga J G, West D C, Tharp M L, et al. Long-term chronosequence of forest succession in the upper RioNegro of Colombia and Venezuela. J Ecol, 1988, 76: 938-958
[26]  21 Pumijumnong N. Dendrochronology in Southeast Asia. Trees, 2013, 27: 343-358
[27]  22 代力民, 孙伟中, 邓红兵, 等. 长白山北坡椴树阔叶红松林群落主要树种的年龄结构研究. 林业科学, 2002, 38: 73-77
[28]  26 洪伟, 王新功, 昱承祯, 等. 濒危植物南方红豆杉种群生命表及谱分析. 应用生态学报, 2004, 15: 1109-1112
[29]  27 封晓辉, 程瑞梅, 肖文发, 等. 基于日均温度的华山松径向生长敏感温度研究. 生态学报, 2012, 32: 1450-1457
[30]  28 吴祥定. 树木年轮与气候变化. 北京: 气象出版社, 1990
[31]  29 赵志江, 谭留夷, 宁佐梅, 等. 王朗自然保护区岷江冷杉(Abies faxoniana)树干解析研究. 西北林学院学报, 2012, 27: 163-168
[32]  30 储子彦. 亚热带39种植物的叶碳效率对环境因子的响应研究. 硕士学位论文. 杭州: 浙江大学, 2008
[33]  31 Bin Y, Lin G J, Li B H, et al. Seedling recruitment patterns in a 20-ha subtropical forest plot: Hints for niche-based processes and negative density dependence. Eur J Forest Res, 2012, 131: 453-463
[34]  33 马明, 王得祥, 刘玉民. 秦岭天然华山松林碳素空间分布规律及其动态变化. 林业资源管理, 2008, 5: 75-78
[35]  34 Liu Y, Yu G, Wang Q, et al. How temperature, precipitation and stand age control the biomass carbon density of global mature forests. Glob Ecol Biogeogr, 2014, 23: 323-333
[36]  35 Stegen J C, Swenson N G, Enquist B J, et al. Variation in above-ground forest biomass across broad climatic gradients. Glob Ecol Biogeogr, 2011, 20: 744-754
[37]  36 Phillips O L, Malhi Y, Higuchi N, et al. Changes in the carbon balance of tropical forests: Evidence from long-term plots. Science, 1998, 282: 439-442
[38]  37 Luyssaert S, Schulze E D, B?rner A, et al. Old-growth forests as global carbon sinks. Nature, 2008, 455: 213-215
[39]  38 Lewis S L, Lopez-Gonzalez G, Sonké B, et al. Increasing carbon storage in intact African tropical forests. Nature, 2009, 457: 1003-1006
[40]  39 Midgley J J. Is bigger better in plants? The hydraulic costs of increasing size in trees. Trends Ecol Evol, 2003, 18: 5-6
[41]  40 Koch G W, Sillett S C, Jennings G M, et al. The limits to tree height. Nature, 2004, 428: 851-854
[42]  42 Naidu S L, Delucia E H, Thomas R B. Contrasting patterns of biomass allocation in dominant and suppressed loblolly pine. J Forest Res, 1998, 28: 1116-1124
[43]  43 Keeling H C, Baker T R, Martinez R V, et al. Contrasting patterns of diameter and biomass increment across tree functional groups in Amazonian forests. Oecologia, 2008, 158: 521-534

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133