全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

碳纳米管与蛋白质相互作用的机制及其生物效应

DOI: 10.1360/N972015-00710, PP. 2977-2988

Keywords: 碳纳米管,蛋白质,相互作用,生物效应,潜在应用

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于碳纳米管本身具有诸多优异的物理化学性质,已经在生物学和医学领域展现出潜在的应用前景.从纳米科技的长期发展而言,碳纳米管的安全应用及其潜在的毒理学评价显得非常重要.众所周知,碳纳米管用于载药、诊断或成像等生物医学领域时,会与生物体内的各种蛋白质产生相互作用,进而会改变碳纳米管自身的理化性质和影响蛋白质的构象及功能,从而引发不同的生物反应.而通过将蛋白质连接到碳纳米管上制备的生物器件,既降低了碳纳米管潜在毒性又为其安全生物应用开拓了市场.因此深入阐述碳纳米管-蛋白质相互作用的机制及后续的生物效应,对发展碳纳米管的安全应用具有重要意义.

References

[1]  1 Whitesides G. The “right” size in nanobiotechnology. Nat Biotechnol, 2003, 21: 1161-1165
[2]  2 Wang L, Zhao W, Tan W. Bioconjugated silica nanoparticles: Development and applications. Nano Res, 2008, 1: 99-115
[3]  3 Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58
[4]  4 Dai H. Carbon nanotubes: Synthesis, integration, and properties. Acc Chem Res, 2002, 35: 1035-1044
[5]  5 Golberg D, Costa P, Mitome M, et al. Nanotubes in a gradient electric field as revealed by STM TEM technique. Nano Res, 2008, 1: 166-175
[6]  6 Zhou W, Rutherglen C, Burke P. Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes. Nano Res, 2008, 1: 158-165
[7]  7 Ago H, Petritsch K, Shaffer M, et al. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater, 1999, 11: 1281-1285
[8]  8 Javey A, Guo J, Wang Q, et al. Ballistic carbon nanotube field-effect transistors. Nature, 2003, 424: 654-657
[9]  9 Fan S, Chapline M, Franklin N, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999, 283: 512-514
[10]  10 Allen B L, Kichambare P D, Star A. Carbon nanotube field-effect-transistor-based biosensors. Adv Mater, 2007, 19: 1439-1451
[11]  11 Dillon A, Jones K, Bekkedahl T, et al. Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997, 386: 377-379
[12]  12 Chen R, Bangsaruntip S, Drouvalakis K, et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci USA, 2003, 100: 4984-4989
[13]  13 Kam N, Jessop T, Wender P, et al. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc, 2004, 126: 6850-6851
[14]  14 Liu Z, Tabakman S, Welsher K, et al. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res, 2009, 2: 85-120
[15]  15 Singh R, Pantarotto D, McCarthy D, et al. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc, 2005, 127: 4388-4396
[16]  16 Kam N, Dai H. Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J Am Chem Soc, 2005, 127: 6021-6026
[17]  17 Kam N, Liu Z, Dai H. Carbon nanotubes as intracellular transporters for proteins and DNA: An investigation of the uptake mechanism and pathway. Angew Chem Int Ed, 2006, 118: 591-595
[18]  18 Kam N, Liu Z, Dai H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc, 2005, 127: 12492-12493
[19]  19 Tang X, Bansaruntip S, Nakayama N, et al. Carbon nanotube DNA sensor and sensing mechanism. Nano Lett, 2006, 6: 1632-1636
[20]  20 Chen Z, Tabakman S, Goodwin A, et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat Biotechnol, 2008, 26: 1285-1292
[21]  21 Kam N, O'Connell M, Wisdom J, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA, 2005, 102: 11600-11605
[22]  22 Chakravarty P, Marches R, Zimmerman N, et al. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc Natl Acad Sci USA, 2008, 105: 8697-8702
[23]  23 De la Zerda A, Zavaleta C, Keren S, et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotech, 2008, 3: 557-562
[24]  24 Rao A, Richter E, Bandow S, et al. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science, 1997, 275: 187-191
[25]  25 Heller D, Baik S, Eurell T, et al. Single-walled carbon nanotube spectroscopy in live cells: Towards long-term labels and optical sensors. Adv Mater, 2005, 17: 2793-2799
[26]  26 Huang N, Wang H, Zhao J, et al. Single-wall carbon nanotubes assisted photothermal cancer therapy: Animal study with a murine model of squamous cell carcinoma. Laser Sur Med, 2010, 42: 798-808
[27]  27 Pantarotto D, Singh R, McCarthy D, et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed, 2004, 116: 5354-5358
[28]  28 Liu Y, Wu D, Zhang W, et al. Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew Chem Int Ed, 2005, 117: 4860-4863
[29]  29 Bhirde A A, Patel S, Sousa A A, et al. Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomedicine, 2010, 5: 1535-1546
[30]  30 Pastorin G. Crucial functionalizations of carbon nanotubes for improved drug delivery: A valuable option? Pharm Res, 2009, 26: 746-769
[31]  31 Meng L, Zhang X, Lu Q, et al. Single walled carbon nanotubes as drug delivery vehicles: Targeting doxorubicin to tumors. Biomaterials, 2012, 33: 1689-1698
[32]  32 Kostarelos K, Bianco A, Prato M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotech, 2009, 4: 627-633
[33]  33 Wang X, Wang C, Cheng L, et al. Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. J Am Chem Soc, 2012, 134: 7414-7422
[34]  34 Liu Z, Yang K, Lee S T. Single-walled carbon nanotubes in biomedical imaging. J Mater Chem, 2011, 21: 586-598
[35]  35 Zerda A, Liu Z, Bodapati S, et al. Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett, 2010, 10: 2168-2172
[36]  36 Zhou F, Wu S, Wu B, et al. Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy. Small, 2011, 7: 2727-2735
[37]  37 Markovic Z M, Harhaji-Trajkovic L M, Todorovic-Markovic B M, et al. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials, 2011, 32: 1121-1129
[38]  38 Marches R, Mikoryak C, Wang R H, et al. The importance of cellular internalization of antibody-targeted carbon nanotubes in the photothermal ablation of breast cancer cells. Nanotechnology, 2011, 22: 095-101
[39]  39 Welsher K, Liu Z, Daranciang D, et al. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett, 2008, 8: 586-590
[40]  40 Muller J, Huaux F, Moreau N, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharm, 2005, 207: 221-231
[41]  41 Nagai H, Okazaki Y, Chew S H, et al. Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci USA, 2011, 108: E1330-E1338
[42]  42 Meng L, Chen R, Jiang A, et al. Short multiwall carbon nanotubes promote neuronal differentiation of PC12 cells via up-regulation of the neurotrophin signaling pathway. Small, 2013, 9: 1786-1798
[43]  43 Wang P, Wang Y, Nie X, et al. Multiwall carbon nanotubes directly promote fibroblast-myofibroblast and epithelial-mesenchymal transitions through the activation of the TGF-b/smad signaling pathway. Small, 2014, 11: 446-455
[44]  44 Wang P, Nie X, Wang Y, et al. Multiwall carbon nanotubes mediate macrophage activation and promote pulmonary fibrosis through TGF-b/smad signaling pathway. Small, 2013, 9: 3799-3811
[45]  45 Liu Y, Zhao Y, Sun B, et al. Understanding the toxicity of carbon nanotubes. Acc Chem Res, 2012, 46: 702-713
[46]  46 Ge C, Du J, Zhao L, et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA, 2011, 108: 16968-16973
[47]  47 Li X, Chen W, Zhan Q, et al. Direct measurements of interactions between polypeptides and carbon nanotubes. J Phys Chem B, 2006, 110: 12621-12625
[48]  48 Chen R, Zhang Y, Wang D, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc, 2001, 123: 3838-3839
[49]  49 Guo Z, Sadler P, Tsang S. Immobilization and visualization of DNA and proteins on carbon nanotubes. Adv Mater, 1998, 10: 701-703
[50]  50 Balavoine F, Schultz P, Richard C, et al. Helical crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors. Angew Chem Int Ed, 1999, 38: 1912-1915
[51]  51 Wei G, Pan C, Reichert J, et al. Controlled assembly of protein-protected gold nanoparticles on noncovalent functionalized carbon nanotubes. Carbon, 2010, 48: 645-653
[52]  52 Erlanger B, Chen B, Zhu M, et al. Binding of an anti-fullerene IgG monoclonal antibody to single wall carbon nanotubes. Nano Lett, 2001, 1: 465-467
[53]  53 Vroman L, Adams A, Fischer G, et al. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in. Blood, 1980, 55: 156-159
[54]  54 Roman T, Di?o W A, Nakanishi H, et al. Amino acid adsorption on single-walled carbon nanotubes. Eur Phys J D, 2006, 38: 117-120
[55]  55 Roman T, Di?o W A, Nakanishi H, et al. Glycine adsorption on single-walled carbon nanotubes. Thin Solid Films, 2006, 509: 218-222
[56]  56 Ganji M. Density functional theory based treatment of amino acids adsorption on single-walled carbon nanotubes. Diam Relat Mater, 2009, 18: 662-668
[57]  57 Li X, Chen W, Zhan Q, et al. Direct measurements of interactions between polypeptides and carbon nanotubes. J Phy Chem B, 2006, 110: 12621-12625
[58]  58 Wijaya I P M, Gandhi S, Nie T J, et al. Protein/carbon nanotubes interaction: The effect of carboxylic groups on conformational and conductance changes. Appl Phys Lett, 2009, 95: 073704
[59]  59 Chen Q, Wang Q, Liu Y C, et al. Energetics investigation on encapsulation of protein/peptide drugs in carbon nanotubes. J Chem Phys, 2009, 131: 015101
[60]  60 Shen J W, Wu T, Wang Q, et al. Adsorption of insulin peptide on charged single-walled carbon nanotubes: Significant role of ordered water molecules. Chem Phys Chem, 2009, 10: 1260-1269
[61]  61 Du J, Ge C, Liu Y, et al. The interaction of serum proteins with carbon nanotubes depend on the physicochemical properties of nanotubes. J Nanosci Nanotech, 2011, 11: 10102-10110
[62]  62 Sacchetti C, Motamedchaboki K, Magrini A, et al. Surface polyethylene glycol conformation influences the protein corona of polyethylene glycol-modified single-walled carbon nanotubes: Potential implications on biological performance. ACS Nano, 2013, 7: 1974-1989
[63]  63 Chen C, Li Y F, Qu Y, et al. Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology. Chem Soc Rev, 2013, 42: 8266-8303
[64]  64 Wang L, Li J, Pan J, et al. Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: Understanding the reduced damage in cell membranes. J Am Chem Soc, 2013, 135: 17359-17368
[65]  65 Zhong J, Song L, Meng J, et al. Bio-nano interaction of proteins adsorbed on single-walled carbon nanotubes. Carbon, 2009, 47: 967-973
[66]  66 Liu S, Yin J, Song M, et al. Interaction between water-soluble hydroxylated single-wall carbon nanotubes and human serum albumin (in Chinese). Chem J Chin Univ, 2009, 30: 1733-1738
[67]  67 Matsuura K, Saito T, Okazaki T, et al. Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. Chem Phys Lett, 2006, 429: 497-502
[68]  68 Shams H, Holt B D, Mahboobi S H, et al. Actin reorganization through dynamic interactions with single-wall carbon nanotubes. ACS Nano, 2013, 8: 188-197
[69]  69 Holt B D, Short P A, Rape A D, et al. Carbon nanotubes reorganize actin structures in cells and ex vivo. ACS Nano, 2010, 4: 4872-4878
[70]  70 Salvador-Morales C, Townsend P, Flahaut E, et al. Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defense mechanisms. Carbon, 2007, 45: 607-617
[71]  71 Karousis N, Papi R, Siskos A, et al. Peptidomimetic-functionalized carbon nanotubes with antitrypsin activity. Carbon, 2009, 47: 3550-3558
[72]  72 Besteman K, Lee J, Wiertz F, et al. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett, 2003, 3: 727-730
[73]  73 Chen R, Choi H, Bangsaruntip S, et al. An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. J Am Chem Soc, 2004, 126: 1563-1568
[74]  74 Davis J, Coleman K, Azamian B, et al. Chemical and biochemical sensing with modified single walled carbon nanotubes. Chem Eur J, 2003, 9: 3732-3739
[75]  75 Ye N, He W, Xu D. Enrichment of human serum proteins by multi-walled carbon nanotubes for mass spectrometric analysis (in Chinese). Chin J Anal Lab, 2008, 27: 66-68
[76]  76 Curtiss L K, Witztum J L. Plasma apolipoproteins AI, AII, B, CI, and E are glucosylated in hyperglycemic diabetic subjects. Diabetes, 1985, 34: 452-461
[77]  77 Hajipour M J, Laurent S, Aghaie A, et al. Personalized protein coronas: A “key” factor at the nanobiointerface. Biomater Sci, 2014, 2: 1210-1221

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133