1 Aizenberg J, Weaver J C, Thanawala1 M S, et al. Skeleton of euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science, 2005, 309: 275-278
[2]
2 Thompson D W. On Growth and Form. 2nd ed. Cambridge: Cambridge University Press, 1968
[3]
3 Currey J D. Bones: Structure and Mechanics. New Jersey: Princeton University Press, 2006
[4]
4 Vincent J F V. Structural Biomaterials: (Revised Edition). New Jersey: Princeton University Press, 2012
[5]
5 Li L, Ortiz C. Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armour. Nat Mater, 2014, 13: 501-507
[6]
6 Burgert I, Keplinger T. Plant micro- and nanomechanics: Experimental techniques for plant cell-wall analysis. J Exp Bot, 2013, 64: 4635-4649
[7]
7 Yu Y, Wang H K, Lu F, et al. Bamboo fibers for composite applications: A mechanical and morphological investigation. J Mater Sci, 2014, 49: 2559-2566
[8]
8 Bouville F, Maire E, Meille S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat Mater, 2014, 13: 508-514
[9]
9 Lu Y X. Significance and progress of bionics. J Bionic Eng, 2004, 1: 1-3
[10]
10 Munch E, Launey M E, Alsem D H, et al. Tough, bio-inspired hybrid materials. Science, 2008, 322: 1516-1520
[11]
11 Chen P Y, McKittrick J, André M. MeyersBiological materials: Functional adaptations and bioinspired designs. Prog Mater Sci, 2012, 57: 1492-1704
[12]
12 Fratzl P, Weinkamer R. Nature's hierarchical materials. Prog Mater Sci, 2007, 52: 1263-1334
[13]
13 Han Z W, Yin W, Zhang J Q, et al. Erosion-resistant surfaces inspired by Tamarisk. J Bionic Eng, 2013, 10: 479-487
[14]
14 Sun B H, Fan T X, Zhang D, et al. The synthesis and microstructure of morph-genetic TiC/C ceramics. Carbon, 2004, 42: 177-182
[15]
15 Bouville F, Maire E, Meille S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat Mater, 2014, 13: 508-514
[16]
16 Fu Q, Rahaman M N, Sonny B B, et al. Mechanical and in vitro performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication technique. Acta Biomater, 2008, 4: 1854-1864
[17]
17 Han Z W, Yin W, Zhang J Q, et al. Active anti-erosion protection strategy in Tamarisk (Tamarix aphylla). Sci Rep, 2013, 3: 1-7
[18]
18 Somerville C, Bauer S, Brininstool G, et al. Toward a systems approach to understanding plant-cell walls. Science, 2004, 306: 2206-2211
[19]
19 Xu P, Liu H W. Models of microfibril elastic modulus parallel to the cell axis. Wood Sci Technol, 2004, 38: 363-374
[20]
20 Kerr A J, Goring D A I. Ultrastructural arrangement of the wood cell wall. Cellul Chem Technol, 1975, 9: 563-573
[21]
21 Larsen M J, Winandy J E, Green F. A proposed model of the tracheid cell wall of southern yellow pine having an inherent radial structure in the S-2 layer. Mater Organismen, 1995, 29: 197-210
[22]
22 Bergander A, Salmén L. Cell wall properties and their effects on the mechanical properties of fibers. J Mater Sci, 2002, 37: 151-156
[23]
23 Affdl J C, Kardos J L. The Halpin-Tsai equations: A review. Polym Eng Sci, 1976, 16: 344-352
[24]
24 Hahn H T, Tsai S W. Introduction to Composite Materials. Pennsylvania: CRC Press, 1980
[25]
25 Wang J Y, Cooper P A. Effect of oil type, temperature and time on moisture properties of hot oil-treated wood. Holz Roh Werkst, 2005, 63: 417-422
[26]
26 Scholz G, Liebner F, Koch G, et al. Chemical, anatomical and technological properties of Snakewood [Brosimum guianense (Aubl.) Huber]. Wood Sci Technol, 2007, 41: 673-686
[27]
27 Xian X J, Xian D G. The relationship of microstructure and mechanical properties of bamboo (in Chinese). J Bamboo Res, 1990, 9: 10-23 [冼杏娟, 冼定国. 竹材的微观结构及其与力学性能的关系. 竹子研究汇刊, 1990, 9: 10-
[28]
28 Zeng Q Y, Li S H, Zhou B L. The characteristics of biomaterials and biomimetics of composite materials (in Chinese). Acta Mater Comp Sin, 1993, 10: 1-7 [曾其蕴, 李世红, 周本濂. 生物复合材料的特征及仿生的探讨. 复合材料学报, 1993, 10: 1-
[29]
29 Li H B, Shen S P. The mechanical properties of bamboo and vascular bundles. J Mater Res, 2011, 26: 2749-2756
[30]
30 Page D H, El-Hosseiny F, Winkler K. Behavior of single wood fibers under axial tensile strain. Nature, 1971, 229: 252-253
[31]
31 Eder M, Stanzl T S, Burgert I. The fracture behaviour of single wood fibres is governed by geometrical constraints: in situ ESEM studies on three fibre types. Wood Sci Technol, 2008, 42: 679-689
[32]
32 Hughes M. Defects in natural fibres: Their origin, characteristics and implications for natural fibre-reinforced composites. J Mater Sci, 2012, 47: 599-609
[33]
33 Wimmer R, Lucas B N, Oliver W C, et al. Longitudinal hardness and Young's modulus of spruce tracheid secondary walls using nanoindentation technique. Wood Sci Technol, 1997, 31: 131-141
[34]
34 Gindl W, Gupta H S, Sch?berl T, et al. Mechanical properties of spruce wood cell walls by nanoindentation. Appl Phys A, 2004, 79: 2069-2073
[35]
35 Tze W T Y, Wang S, Rials T G, et al. Nanoindentation of wood cell wall: Continuous stiffness and hardness measurement. Comp Part A: Appl Sci Manufac, 2007, 38: 945-953
[36]
36 Wu Y, Wang S Q, Zhou D G, et al. Use of nanoindentation and silviscan to determine the mechanical properties of 10 hardwood species. Wood Fiber Sci, 2009, 41: 64-73
[37]
37 Xing C, Wang S Q, Pharr G M, et al. Effect of thermo-mechanical refining pressure on the properties of wood fibers. Holzforschung, 2008, 62: 230-236
[38]
38 Hosseinaei O, Wang S, Rials T G, et al. Effects of decreasing carbohydrate content on properties of wood strands. Cellulose, 2011, 18: 841-850
[39]
39 Zou L, Jin H, Lu W Y, et al. Nanoscale structural and mechanical characterization of the cell wall of bamboo fibers. Mater Sci Eng C, 2009, 29: 1375-1379
[40]
40 Zou L H, Jin H, Lu W Y, et al. Nanoscale structural and mechanical characterization of the cell wall of bamboo fibers. Mater Sci Eng C, 2009, 29: 1375-1379
[41]
41 Mark R E. Cell Wall Mechanics of Tracheids. New Haven: Yale University Press, 1967
[42]
42 Cave I D. The anisotropic elasticity of the plant cell wall. Wood Sci Technol, 1968, 2: 268-278
[43]
43 Schniewind A P, Barrett J D. Cell wall model with complete shear restraint. Wood Fiber, 1969, 1: 205-214
[44]
44 Yamamoto H, Kojima Y. Properties of cell wall constituents in relation to longitudinal elasticity of wood. Wood Sci Technol, 2002, 36: 55-74
[45]
45 Keckes J, Burgert I, Frühmann K, et al. Cell-wall recovery after irreversible deformation of wood. Nat Mater, 2003, 2: 810-813
[46]
46 Li S H, Zeng Q Y, Xiao Y L, et al. Biomimicry of bamboo bast fiber with engineering composite materials. Mater Sci Eng C, 1995, 3: 125-130
[47]
47 Burgent I, Bernasconi A, Nikas K J, et al. The influence of rays on the transverse elastic anisotropy in green wood of deciduous trees. Holzforschung, 2001, 55: 449-454
[48]
48 Page D H, Hosseiny F. The mechanical properties of single wood pulp fibers: Part VI. Fibril angle and the shape of the stress-strain curve. J Pulp Pap Sci, 1983, 9: 99-100
[49]
49 Wild P M, Provan J W, Guin R, et al. The effects of cyclic axial loading of single wood pulp fibers at elcvated temperature and humidity. Tappi J, 1999, 82: 209-214
[50]
50 Salmén L, Burgert I. Cell wall features with regard to mechanical performance. A review COST Action E35 2004-2008: Wood machining-micromechanics and fracture. Holzforschung, 2009, 63: 121-129
[51]
51 Burgert I. Exploring the micromechanical design of plant cell walls. Am J Bot, 2006, 93: 1391-1401
[52]
52 Matan N, Kyokong B. Effect of moisture content on some physical and mechanical properties of juvenile rubberwood (Hevea brasiliensis Muell. Arg.). Songklanakarin J Sci Technol, 2003, 25: 327-340
[53]
53 Wang H K, Yu Y, Yu Y S, et al. Comparative on four mechanical properties of bamboo under air-dried and saturated state (in Chinese). Sci Silvae Sin, 2010, 46: 119-123 [王汉坤, 余雁, 喻云水, 等. 气干和饱水状态下毛竹4种力学性质的比较. 林业科学, 2010, 46: 119-
[54]
54 Reiterer A, Burgert I, Sinn G, et al. The radial reinforcement of the wood structure and its implication on mechanical and fracture mechanical properties—A comparison between two tree species. J Mater Sci, 2002, 37: 935-940
[55]
55 Reiterer A, Sinn G, Stanzl-Tschegg S E. Fracture characteristics of different wood species under mode I loading perpendicular to the grain. Mater Sci Eng A, 2002, 332: 29-36
[56]
56 Wu E M. Application of fracture mechanics to anisotropic plates. J Appl Mech, 1967, 34: 967-974
[57]
57 Triboulot P, Jodin P, Pluvinage G. Validity of fracture mechanics concepts applied to wood by finite element calculation. Wood Sci Technol, 1984, 18: 51-58
[58]
58 Shao Z P, Fang C H, Tian G L. Mode I interlaminar fracture property of moso bamboo (Phyllostachys pubescens). Wood Sci Technol, 2009, 43: 527-536
[59]
59 Qiu L P, Zhu E C, van de Kuilen J W G. Modeling crack propagation in wood by extended finite element method. Eur J Wood Wood Prod, 2014, 72: 273-283
[60]
60 Low I M, Che Z Y, Latella B A, et al. Mechanical and fracture properties of bamboo. Key Eng Mater, 2006, 312: 15-20
[61]
61 Amada S, Untao S. Fracture properties of bamboo. Comp Part B Eng, 2001, 32: 451-459
[62]
62 Habibi M K, Lu Y. Crack Propagation in bamboo's hierarchical cellular structure. Sci Rep, 2014, 4: 1-7
[63]
63 McLaren K G, Tabor D. The frictional properties of lignum vitae. Br J Appl Phys, 1961, 12: 118-120
[64]
64 Iida R, Ohtani T, Nakai T, et al. Changes in wood temperature under high-speed friction. J Wood Sci, 2014, 60: 313-320
[65]
65 Svensson B A, Nystr?m S, Gradin P A, et al. Frictional testing of wood-initial studies with a new device. Tribol Int, 2009, 42: 190-196
[66]
66 McKenzie W M, Karpovich H. The frictional behavior of wood. Wood Sci Technol, 1968, 2: 139-152
[67]
67 Svensson B A, Holmgren S E, Gradin P A, et al. High strain rate compression and sliding friction of wood under refining conditions. International Mechanical Pulping Conference, 2007
[68]
68 Gratton L M, Defrancesco S. A simple measurement of the sliding friction coefficient. Phys Educ, 2006, 41: 232
[69]
69 Stamm B, Natterer J, Navi P. Joining wood by friction welding. Holz als Roh-und Werkstoff, 2005, 63: 313-320
[70]
70 Chand N, Dwivedi U K, Acharya S K. Anisotropic abrasive wear behaviour of bamboo (Dentrocalamus strictus). Wear, 2007, 262: 1031-1037
[71]
71 Xu M J, Li L, Wang M Z, et al. Effects of surface roughness and wood grain on the friction coefficient of wooden materials for wood-wood frictional pair. Tribol Trans, 2014, 57: 871-878
[72]
72 Xu M J, Li L, Gao X X, et al. Grain direction infl uencing on the friction coeffi cient between woodand rubber belts (in Chinese). Wood Process Mach, 2013, 23: 38-42 [许美君, 李黎, 高鑫鑫, 等. 纹理方向对木材与橡胶带间摩擦系数的影响. 木材加工机械, 2013, 23: 38-
[73]
73 Chand N, Dwivedi U K. High stress abrasive wear study on bamboo. J Mater Process Technol, 2007, 183: 155-159
[74]
74 Jain S, Kumar R, Jindal U C. Mechanical behaviour of bamboo and bamboo composite. J Mater Sci, 1992, 27: 4598-4604
[75]
75 Tong J, Arnell R D, Ren L Q. Dry sliding wear behaviour of bamboo. Wear, 1998, 221: 37-46
[76]
76 Tong J, Ren L Q, Li J Q, et al. Abrasive wear behaviour of bamboo. Tribol Int, 1995, 28: 323-328
[77]
77 Yakou T, Sakomoto S. Abrasive properties of bamboo. Jpn J Tribol, 1993, 38: 491-497
[78]
78 Tong J, Ma Y H, Chen D H, et al. Effects of vascular fiber content on abrasive wear of bamboo. Wear, 2005, 259: 78-83
[79]
79 Ritchie R O. The conflicts between strength and toughness. Nat Mater, 2011, 10: 817-822
[80]
80 Espinosa H D, Filleter T, Naraghi M. Multiscale experimental mechanics of hierarchical carbon-based materials. Adv Mater, 2012, 24: 2805-2823
82 Ortiz C, Boyce M C. Bioinspired structural materials. Science, 2008, 319: 1053-1054
[83]
83 Vali H, Akenjiang T, Hasiyet H, et al. Experimental research on compressive strength of straw fiber adobe (in Chinese). Building Sci, 2012, 28: 61-64 [外力·艾比不拉, 阿肯江·托呼提, 哈斯亚提·哈里丁, 等. 植物纤维单块土坯抗压试验研究. 建筑科学, 2012, 28: 61-
[84]
84 Shibulal G S, Naskar K. Structurally different short aramid fiber-reinforced thermoplastic polyurethane. Polym Compos, 2014, 35: 1767-1778
[85]
85 Makar J M, Margeson J, Luh J. Carbon nanotube/cement composites—Early results and potential applications. In: Banthia N, Uomoto T, Bentur A, et al., eds. In: Proceedings of 3rd international conference on construction materials: Performance, innovations and structural implications. Vancouver: NRC Publications Archive, 2005. 1-10
[86]
86 Vishtal A, Retulainen E. Boosting the extensibility potential of fibre networks: A review. BioResources, 2014, 9: 7951-8001
[87]
87 Dunlop J W C, Fratzl P. Multilevel architectures in natural materials. Scr Mater, 2013, 68: 8-12
[88]
88 Dunlop J W C, Fratzl P. Biological composites. Annu Rev Mater Res, 2010, 40: 1-24
[89]
89 Li S H, Zhou B L, Zheng Z Q, et al. A fine-scale bionic model for composite materianls (in Chinese). Mater Sci Prog, 1991, 5: 543-547 [李世红, 周本濂, 郑宗光, 等. 一种在细观尺度上仿生的复合材料模型. 材料科学进展, 1991, 5: 543-
[90]
90 Cui Y Q, Liu X Q. Performance requirments and effect factors of automotive brake friction material composites (in Chinese). Mater Rev, 2014, 28: 413-416 [崔艳芹, 刘学庆. 汽车制动摩擦材料的性能要求及影响因素. 材料导报, 2014, 28: 413-
[91]
91 Li H J, Zeng X R, Li K Z, et al. Research and application of carbon—Carbon composites in China (in Chinese). Carbon, 2001, 4: 8-13 [李贺军, 曾燮榕, 李克智, 等. 我国炭/炭复合材料研究进展. 炭素, 2001, 4: 8-
[92]
92 Policandriotes T, Filip P. Effects of selected nanoadditives on the friction and wear performance of carbon-carbon aircraft brake composites. Wear, 2011, 271: 2280-2289
[93]
93 Fitzer E. Carbon Reinforcements and Carbon/Carbon Composites. Berlin: Springer, 1998
[94]
94 Meyers M A, McKittrick J, Chen P Y. Structural biological materials: Critical mechanics-materials connections. Science, 2013, 339: 773-779
[95]
95 Heuer A H, Fink D J, Laraia V J, et al. Innovative materials processing strategies: A biomimetic approach. Science, 1992, 255: 1098-1105
[96]
96 Cui F Z, Zheng C L. Biomimetic Materials (in Chinese). Beijing: Chemical Industry Press, 2004 [崔福斋, 郑传林. 仿生材料. 北京: 化学工业出版社,
[97]
97 Erb R M, Libanori R, Rothfuchs N, et al. Composites reinforced in three dimensions by using low magnetic fields. Science, 2012, 335: 199-204