1 Nguyen P K, Ravindran R, Carr R, et al. Structural flexibility of the shuttle remote manipulator system mechanical arm. In:Proceedings of the Guidance and Control Conference, 1982. 246-256
[2]
2 McGregor R, Oshinowo L. Flight 6A:Deployment and Checkout of the Space Station Remote Manipulator System (SSRMS). In:Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), 2001
[3]
3 Sallaberger C, Force S P T, Agency C S. Canadian space robotic activities. Acta Astronaut, 1997, 41:239-246
[4]
4 Diftler M A, Mehling J S, Abdallah M E, et al. Robonaut 2-The first humanoid robot in space. In:International Conference on Robotics and Automation, 2011. 2178-2183
[5]
5 Laryssa P, Lindsay E, Layi O, et al. International space station robotics:A comparative study of ERA, JEMRMS and MSS. In:Proceedings of the 7th ESA Workshop on Advanced Space Technologies for Robotics and Automation, ASTRA, 2002
[6]
6 Zawieska K, Duffy B R. Human-robot exploration. In:The 23rd IEEE International Symposium on Robot and Human Interactive Communication, 2014. 808-813
[7]
7 Staritz P J, Skaff S, Urmson C, et al. Skyworker:A robot for assembly, inspection and maintenance of large scale orbital facilities. In:IEEE International Conference on Robotics and Automation. 2001, 4:4180-4185
[8]
8 Parrish C J. The ranger telerobotic shuttle experiment:An on-orbit satellite servicer. Artif Intell, 1999, 440:225
[9]
9 Rubinger B, Fulford P, Gregoris L, et al. Self-adapting robotic auxiliary hand (SARAH) for SPDM operations on the international space station. In:Proceedings of I-SAIRAS, Quebec, Canada, 2001
[10]
10 Diftler M A, Culbert C J, Ambrose R O, et al. Evolution of the NASA/DARPA robonaut control system. In:IEEE International Conference on Robotics and Automation. 2003, 2:2543-2548
[11]
11 Diftler M A, Mehling J S, Abdallah M E, et al. Robonaut 2-The first humanoid robot in space. In:IEEE International Conference on Robotics and Automation, 2011. 2178-2183
[12]
12 Howell E. Astronauts and Some Australians Get Lonely. How To Fix? This Robot Could Be A Start. Australian Science, 2015, http://www.australianscience.com.au/space/astronauts-and-some-australians-get-lonely-how-to-fix-this-robot-could-be-a-start
[13]
13 Dorais G A, Gawdiak Y. The personal satellite assistant:An internal spacecraft autonomous mobile monitor. IEEE Aerospace Conference, 2003, 1:333-348
[14]
14 Unver O, Sitti M. Flat dry elastomer adhesives as attachment materials for climbing robots. IEEE Trans Robot, 2010, 26:131-141
[15]
15 Kim S, Trujillo S, Cutkosky M R. Smooth vertical surface climbing with directional adhesion. IEEE Trans Robot, 2008, 24:1-10
[16]
16 Henrey M, Ahmed A, Boscariol P, et al. Abigaille-III:A versatile, bioinspired hexapod for scaling smooth vertical surfaces. J Bion Eng, 2014, 11:1-17
[17]
17 Yu Z, Wang Z, Liu R, et al. Stable gait planning for a gecko-inspired ro bot to climb on vertical surface. In:IEEE International Conference on Mechatronics and Automation, 2013. 307-311
[18]
18 Autumn K, Liang Y A, Hsieh S T, et al. Adhesive force of a single gecko foot-hair. Nature, 2000, 405:681-685
[19]
19 Qu L T, Dai L M, Stone M, et al. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science, 2008, 322:238-242
[20]
20 Zhang H, Guo D J, Dai Z D. Progress on gecko-inspired micro/nano-adhesion arrays. Chin Sci Bull, 2010, 55:1843-1850
[21]
21 Geim A K, Dubonos S V, Grigorieva I V, et al. Microfabricated adhesive mimicking gecko foot-hair. Nat Mater, 2003, 2:461-463
[22]
22 Lee J, Fearing R S, Komvopoulos K. Directional adhesion of gecko-inspired angled microfiber arrays. Appl Phys Lett, 2008, 93:191910
[23]
23 Kim S, Spenko M, Trujillo S, et al. Whole body adhesion:Hierarchical, directional and distributed control of adhesive forces for a climbing robot. In:International Conference on Robotics and Automation, 2007. 1268-1273
[24]
24 Zhang H, Wu L W, Jia S X, et al. Fabrication and adhesion of hierarchical micro-seta (in Chinese). Chin Sci Bull, 2012, 57:673-681[张 昊, 吴连伟, 贾世星, 等. 层级仿生微阵列的制备及黏附性能. 科学通报, 2012, 57:673-
[25]
25 Shan J, Mei T, Ni L, et al. Fabrication and adhesive force analysis of biomimetic gecko foot-hair array. In:1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2006. 1546-1549
[26]
26 Kim S, Sitti M, Jang J H, et al. Fabrication of bio-inspired elastomer nanofiber arrays with spatulate tips using notching effect. IEEE Conference on Nanotechnology, 2008:780-782
[27]
27 Greiner C, del Campo A, Arzt E. Adhesion of bioinspired micropatterned surfaces:Effects of pillar radius, aspect ratio, and preload. Langmuir, 2007, 23:3495-3502
[28]
28 Gorb S N, Sinha M, Peressadko A, et al. Insects did it first:A micropatterned adhesive tape for robotic applications. Bio-inspir Biomimet, 2007, 2:S117
[29]
29 Murphy M P, Aksak B, Sitti M. Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips. J Adhesion Sci Technol, 2007, 21:1281-1296
[30]
30 Jeong H, Lee S, Kim P, et al. High aspect-ratio polymer nanostructures by tailored capillarity and adhesive force. Colloids Surf A:Physicochem Eng Aspects, 2008, 313-314:359-364
[31]
31 Ge L H, Sethi S, Ci L J, et al. Carbon nanotube-based synthetic gecko tapes. Proc Natl Acad Sci USA, 2007, 104:10792-10795
[32]
32 Luo M, Li Y, Yao Y G, et al. The transfer and adhesion of alligened carbon nanotube (in Chinese). Chin Sci Bull, 2015, 60:771-779[罗敏, 李阳, 姚亚刚, 等. 干黏附碳纳米管垂直阵列的转移及其黏附性能评价. 科学通报, 2015, 60:771-
[33]
33 Li Y, Wang Z Y, He Q S, et al. Adhesion of a carbon nanotube array and its polydimethy-lsiloxane composite in vacuum and thermal vacuum (in Chinese). Chin Sci Bull, 2015, 60:213-223[李阳, 汪中原, 何青松, 等. 碳纳米管阵列及其增强高分子复合材料在真空 和高温环境下的黏附性能. 科学通报, 2015, 60:213-