1 Huang S Q, Sun S G, Takahashi Y, et al. Gender variation of sequential inflorescences in a monoecious plant Sagittaria trifolia (Alismataceae). Ann Bot, 2002, 90:613-622
[2]
2 Seymour R S, Ito Y, Onda Y, et al. Effects of floral thermogenesis on pollen function in Asian skunk cabbage Symplocarpus renifolius. Biol Lett, 2009, 5:568-570
[3]
3 Wang R H, Zhang Z X. Perspectives and research advances on the thermogenesis (in Chinese). Guihaia, 2011, 3:407-413[王若涵, 张志 翔. 开花生热效应研究进展. 广西植物, 2011, 3:407-
[4]
4 Seymour R S, Lindshau G, Ito K. Thermal clamping of temperature-regulating flowers reveals the precision and limits of the biochemical regulatory mechanism. Planta, 2010, 231:1291-1300
[5]
5 Seymour R S, Schultze-Motel P. Heat-producing flowers. Endeavour, 1997, 21:125-129
[6]
6 Miller R E, Grant N M, Giles L, et al. In the heat of the night-alternative pathway respiration drives thermogenesis in Philodendron bipinnatifidum. New Phytol, 2011, 189:1013-1026
[7]
7 Li J K, Huang S Q. Flower thermoregulation facilitates fertilization in Asian sacred lotus. Ann Bot, 2009, 103:1159-1163
[8]
8 Gibernau M, Seymour R S, White C R. Environmental biology:Heat reward for insect pollinators. Nature, 2003, 426:243-244
[9]
9 Suinyuy T N, Donaldson J S, Johnson S D. Patterns of odour emission, thermogenesis and pollinator activity in cones of an African cycad:What mechanisms apply? Ann Bot, 2013, 112:891-902
[10]
10 Wang R H, Xu S, Liu X Y, et al. Thermogenesis, flowering and the association with variation in floral odour attractants in Magnolia sprengeri (Magnoliaceae). PLoS One, 2014, 9:e99356
[11]
11 Bermadinger-Stabentheiner E, Stabentheiner A. Dynamics of thermogenesis and structure of epidermal tissues in inflorescences of Arum maculatum. New Phytol, 1995, 131:41-50
[12]
12 Vollmer M, M?llmann K P. Infrared Thermal Imaging:Fundamentals, Research and Applications. New York:John Wiley and Sons Ltd, 2010
[13]
13 Skubatz H, Nelson T, Dong A, et al. Infrared thermography of Arum lily inflorescences. Planta, 1990, 182:432-436
[14]
14 Wang R H, Liu X Y, Mou S L, et al. Temperature regulation of floral buds and floral thermogenicity in Magnolia denudata (Magnoliaceae). Trees, 2013, 27:1755-1762
[15]
15 Barthlott W, Szarzynski J, Vlek P, et al. A torch in the rain forest:Thermogenesis of the titan arum (Amorphophallus titanum). Plant Biol, 2009, 11:499-505
[16]
16 Ivancic A, Roupsard O, Garcia J Q, et al. Thermogenesis and flowering biology of Colocasia gigantea, Araceae. J Plant Res, 2008, 121:73-82
[17]
17 Wang R H, Zhang Z X. Floral thermogenesis:An adaptive strategy of pollination biology in Magnoliaceae. Commun Integr Biol, 2015, 8:e992746
[18]
18 Lamprecht I, Seymour R S, Schultze-Motel P. Direct and indirect calorimetry of thermogenic flowers of the sacred lotus, Nelumbo nucifera. Thermochim Acta, 1998, 309:5-16
[19]
19 Seymour R S. Pattern of respiration by intact inflorescences of the thermogenic arum lily Philodendron selloum. J Exp Bot, 1999, 50:845-852
[20]
20 Seymour R S. Dynamics and precision of thermoregulatory responses of eastern skunk cabbage Symplocarpus foetidus. Plant Cell Environ, 2004, 27:1014-1022
[21]
21 Seymour R S, Schultze-Motel P. Respiration, temperature regulation and energetics of thermogenic inflorescences of the dragon lily Dracunculus vulgaris (Araceae). Proc Roy Soc B-Biol Sci, 1999, 266:1975
[22]
22 Ito K, Abe Y, Johnston S D, et al. Ubiquitous expression of a gene encoding for uncoupling protein isolated from the thermogenic inflorescence of the dead horse arum Helicodiceros muscivorus. J Exp Bot, 2003, 54:1113-1114
[23]
23 Seymour R S, Silberbauer-Gottsberger I, Gottsberger G. Respiration and temperature patterns in thermogenic flowers of Magnolia ovata under natural conditions in Brazil. Funct Plant Biol, 2010, 37:870-878
[24]
24 Gottsberger G, Silberbauer-Gottsberger I, Seymour R S, et al. Pollination ecology of Magnolia ovata may explain the overall large flower size of the genus. Flora, 2012, 207:107-118
[25]
25 Dieringer G, Lara M, Loya L. Beetle pollination and floral thermogenicity in Magnolia tamaulipana (Magnoliaceae). Int J Plant Sci, 1999, 160:64-71
[26]
26 Kumano-Nomura Y, Yamaoka R. Beetle visitations, and associations with quantitative variation of attractants in floral odors of Homalomena propinqua (Araceae). J Plant Res, 2009, 122:183-192
[27]
27 Thien L B, Bernhardt P, Devall M S, et al. Pollination biology of basal angiosperms (ANITA grade). Am J Bot, 2009, 96:166-182
[28]
28 Nagy K A, Odell D K, Seymour R S. Temperature regulation by the inflorescence of philodendron. Science, 1972, 178:1195-1197
[29]
29 Meeuse B J D, Raskin I. Sexual reproduction in the arum lily family, with emphasis on thermogenicity. Sex Plant Repord, 1988, 1:3-15
[30]
30 Vanlerberghe G C, Mcintosh L. Alternative oxidase:From gene to function. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48:703-734
[31]
31 Rasmusson A G, Fernie A R, Dongen J T. Alternative oxidase:A defence against metabolic fluctuations? Physiol Plant, 2009, 137:371-382
[32]
32 Liang Z. The cyanide elctron transport chain in plant mitochondria (in Chinese). Plant Physiol Commun, 1985, 5:1-9[梁峥. 植物线粒体 抗氰电子传递链. 植物生理学通讯, 1985, 5:1-
[33]
33 Berthold D A, Stenmark P. Membrane-bound diiron carboxylate proteins. Annu Rev Plant Biol, 2003, 54:497-517
[34]
34 Albury M S, Affourtit C, Crichton P G, et al. Structure of the plant alternative oxidase:Site-directed mutagenesis provides new information on the active site and membrane topology. J Biol Chem, 2002, 277:1190-1194
[35]
35 Berthold D A, Voevodskaya N, Stenmark P, et al. EPR studies of the mitochondrial alternative oxidase:Evidence for a diiron carboxylate center. J Biol Chem, 2002, 277:43608-43614
[36]
36 Moore A L, Carré J E, Affourtit C, et al. Compelling EPR evidence that the alternative oxidase is a diiron carboxylate protein. Biochim Biophys Acta, 2008, 1777:327-333
[37]
37 Moore A L, Albury M S. Further insights into the structure of the alternative oxidase:From plants to parasites. Biochem Soc Trans, 2008, 36:1022-1026
[38]
38 Albury M S, Elliott C, Moore A L. Ubiquinol-binding site in the alternative oxidase:Mutagenesis reveals features important for substrate binding and inhibition. Biochim Biophys Acta, 2010, 1797:1933-1939
[39]
39 Affourtit C, Albury M S, Crichton P G, et al. Exploring the molecular nature of alternative oxidase regulation and catalysis. FEBS Lett, 2002, 510:121-126
[40]
40 Juszczuk I M, Rychter A M. Alternative oxidase in higher plants. Acta Biochim Pol, 2003, 50:1257-1271
[41]
41 Watling J R, Robinson S A, Seymour R S. Contribution of the alternative pathway to respiration during thermogenesis in flowers of the sacred lotus. Plant Physiol, 2006, 140:1367-1373
[42]
42 Grant N M, Miller R E, Watling J R, et al. Synchronicity of thermogenic activity, alternative pathway respiratory flux, AOX protein content, and carbohydrates in receptacle tissues of sacred lotus during floral development. J Exp Bot, 2008, 59:705-714
[43]
43 Chaimovich H, Martins L S, Silva M P, et al. PUMPing plants. Nature, 1995, 375:24
[44]
44 Laloi M, Klein M, Riesmeier J W, et al. A plant cold-induced uncoupling protein. Nature, 1997, 389:135-136
[45]
45 Ricquier D, Bouillaud F. The uncoupling protein homologues:UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J, 2000, 345:161-179
[46]
46 Krauss S, Zhang C Y, Lowell B B. The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol, 2005, 6:248-261
[47]
47 Vercesi A E, Borecky J, Maia I D G, et al. Plant uncoupling mitochondrial proteins. Annu Rev Plant Biol, 2006, 57:383-404
[48]
48 Cannon B, Nedergaard J. Brown adipose tissue:Function and physiological significance. Physiol Rev, 2004, 84:277-359
[49]
49 Ito K, Seymour R S. Expression of uncoupling protein and alternative oxidase depends on lipid or carbohydrate substrates in thermogenic plants. Biol Lett, 2005, 1:427-430
[50]
50 Ito-Inaba Y, Hida Y, Mori H, et al. Molecular identity of uncoupling proteins in thermogenic skunk cabbage. Plant Cell Physiol, 2008, 49:1911-1916
[51]
51 Ito-Inaba Y, Hida Y, Matsumura H, et al. The gene expression landscape of thermogenic skunk cabbage suggests critical roles for mitochondrial and vacuolar metabolic pathways in the regulation of thermogenesis. Plant Cell Environ, 2012, 35:554-566
[52]
52 Qi L W, Li X M, Zhang S Z, et al. Genetic regulation of non-coding RNA (in Chinese). Sci China Ser C:Life Sci, 2006, 3:193-208[齐力 旺, Li X M, 张守攻, 等. 非编码蛋白RNA 的遗传调控. 中国科学C 辑:生命科学, 2006, 3:193-
[53]
53 Xu Z H, Xie C X. Advances in plant microRNA and stresses response (in Chinese). Hereditas, 2010, 10:1018-1030[许振华, 谢传晓. 植 物microRNA 与逆境响应研究进展. 遗传, 2010, 10:1018-
[54]
54 Zhu Q H, Helliwell C A. Regulation of flowering time and floral patterning by miR172. J Exp Bot, 2010, 62:487-495
[55]
55 Curaba J, Spriggs A, Taylor J, et al. miRNA regulation in the early development of barley seed. BMC Plant Biol, 2012, 12:120
[56]
56 Liu X Y, Cao D C, Ji X Y, et al. miRNAs play essential roles in the floral thermogenesis of Magnolia denudata (Magnoliaceae). Trees, 2015, 29:35-42