全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

植物开花生热的生物功能及其调控机制研究进展

DOI: 10.1360/N972015-00755, PP. 3106-3113

Keywords: 开花生热,红外成像,交替氧化酶,解偶联蛋白,miRNA

Full-Text   Cite this paper   Add to My Lib

Abstract:

开花生热是某些植物科属在长期进化过程中形成的一项重要适应机制,有助于植物花器官抵御低温伤害,并且能够促进昆虫访花和传粉受精,对于确保植物的生殖成功具有重要的生物学意义.本文基于国内外近年来植物开花生热研究方面取得的重要进展,结合开花生热活体实时检测的技术发展,对植物开花生热的类型、生物学功能以及调控机制进行综述,并展望了植物开花生热研究领域亟待解决的重要问题.

References

[1]  1 Huang S Q, Sun S G, Takahashi Y, et al. Gender variation of sequential inflorescences in a monoecious plant Sagittaria trifolia (Alismataceae). Ann Bot, 2002, 90:613-622
[2]  2 Seymour R S, Ito Y, Onda Y, et al. Effects of floral thermogenesis on pollen function in Asian skunk cabbage Symplocarpus renifolius. Biol Lett, 2009, 5:568-570
[3]  3 Wang R H, Zhang Z X. Perspectives and research advances on the thermogenesis (in Chinese). Guihaia, 2011, 3:407-413[王若涵, 张志 翔. 开花生热效应研究进展. 广西植物, 2011, 3:407-
[4]  4 Seymour R S, Lindshau G, Ito K. Thermal clamping of temperature-regulating flowers reveals the precision and limits of the biochemical regulatory mechanism. Planta, 2010, 231:1291-1300
[5]  5 Seymour R S, Schultze-Motel P. Heat-producing flowers. Endeavour, 1997, 21:125-129
[6]  6 Miller R E, Grant N M, Giles L, et al. In the heat of the night-alternative pathway respiration drives thermogenesis in Philodendron bipinnatifidum. New Phytol, 2011, 189:1013-1026
[7]  7 Li J K, Huang S Q. Flower thermoregulation facilitates fertilization in Asian sacred lotus. Ann Bot, 2009, 103:1159-1163
[8]  8 Gibernau M, Seymour R S, White C R. Environmental biology:Heat reward for insect pollinators. Nature, 2003, 426:243-244
[9]  9 Suinyuy T N, Donaldson J S, Johnson S D. Patterns of odour emission, thermogenesis and pollinator activity in cones of an African cycad:What mechanisms apply? Ann Bot, 2013, 112:891-902
[10]  10 Wang R H, Xu S, Liu X Y, et al. Thermogenesis, flowering and the association with variation in floral odour attractants in Magnolia sprengeri (Magnoliaceae). PLoS One, 2014, 9:e99356
[11]  11 Bermadinger-Stabentheiner E, Stabentheiner A. Dynamics of thermogenesis and structure of epidermal tissues in inflorescences of Arum maculatum. New Phytol, 1995, 131:41-50
[12]  12 Vollmer M, M?llmann K P. Infrared Thermal Imaging:Fundamentals, Research and Applications. New York:John Wiley and Sons Ltd, 2010
[13]  13 Skubatz H, Nelson T, Dong A, et al. Infrared thermography of Arum lily inflorescences. Planta, 1990, 182:432-436
[14]  14 Wang R H, Liu X Y, Mou S L, et al. Temperature regulation of floral buds and floral thermogenicity in Magnolia denudata (Magnoliaceae). Trees, 2013, 27:1755-1762
[15]  15 Barthlott W, Szarzynski J, Vlek P, et al. A torch in the rain forest:Thermogenesis of the titan arum (Amorphophallus titanum). Plant Biol, 2009, 11:499-505
[16]  16 Ivancic A, Roupsard O, Garcia J Q, et al. Thermogenesis and flowering biology of Colocasia gigantea, Araceae. J Plant Res, 2008, 121:73-82
[17]  17 Wang R H, Zhang Z X. Floral thermogenesis:An adaptive strategy of pollination biology in Magnoliaceae. Commun Integr Biol, 2015, 8:e992746
[18]  18 Lamprecht I, Seymour R S, Schultze-Motel P. Direct and indirect calorimetry of thermogenic flowers of the sacred lotus, Nelumbo nucifera. Thermochim Acta, 1998, 309:5-16
[19]  19 Seymour R S. Pattern of respiration by intact inflorescences of the thermogenic arum lily Philodendron selloum. J Exp Bot, 1999, 50:845-852
[20]  20 Seymour R S. Dynamics and precision of thermoregulatory responses of eastern skunk cabbage Symplocarpus foetidus. Plant Cell Environ, 2004, 27:1014-1022
[21]  21 Seymour R S, Schultze-Motel P. Respiration, temperature regulation and energetics of thermogenic inflorescences of the dragon lily Dracunculus vulgaris (Araceae). Proc Roy Soc B-Biol Sci, 1999, 266:1975
[22]  22 Ito K, Abe Y, Johnston S D, et al. Ubiquitous expression of a gene encoding for uncoupling protein isolated from the thermogenic inflorescence of the dead horse arum Helicodiceros muscivorus. J Exp Bot, 2003, 54:1113-1114
[23]  23 Seymour R S, Silberbauer-Gottsberger I, Gottsberger G. Respiration and temperature patterns in thermogenic flowers of Magnolia ovata under natural conditions in Brazil. Funct Plant Biol, 2010, 37:870-878
[24]  24 Gottsberger G, Silberbauer-Gottsberger I, Seymour R S, et al. Pollination ecology of Magnolia ovata may explain the overall large flower size of the genus. Flora, 2012, 207:107-118
[25]  25 Dieringer G, Lara M, Loya L. Beetle pollination and floral thermogenicity in Magnolia tamaulipana (Magnoliaceae). Int J Plant Sci, 1999, 160:64-71
[26]  26 Kumano-Nomura Y, Yamaoka R. Beetle visitations, and associations with quantitative variation of attractants in floral odors of Homalomena propinqua (Araceae). J Plant Res, 2009, 122:183-192
[27]  27 Thien L B, Bernhardt P, Devall M S, et al. Pollination biology of basal angiosperms (ANITA grade). Am J Bot, 2009, 96:166-182
[28]  28 Nagy K A, Odell D K, Seymour R S. Temperature regulation by the inflorescence of philodendron. Science, 1972, 178:1195-1197
[29]  29 Meeuse B J D, Raskin I. Sexual reproduction in the arum lily family, with emphasis on thermogenicity. Sex Plant Repord, 1988, 1:3-15
[30]  30 Vanlerberghe G C, Mcintosh L. Alternative oxidase:From gene to function. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48:703-734
[31]  31 Rasmusson A G, Fernie A R, Dongen J T. Alternative oxidase:A defence against metabolic fluctuations? Physiol Plant, 2009, 137:371-382
[32]  32 Liang Z. The cyanide elctron transport chain in plant mitochondria (in Chinese). Plant Physiol Commun, 1985, 5:1-9[梁峥. 植物线粒体 抗氰电子传递链. 植物生理学通讯, 1985, 5:1-
[33]  33 Berthold D A, Stenmark P. Membrane-bound diiron carboxylate proteins. Annu Rev Plant Biol, 2003, 54:497-517
[34]  34 Albury M S, Affourtit C, Crichton P G, et al. Structure of the plant alternative oxidase:Site-directed mutagenesis provides new information on the active site and membrane topology. J Biol Chem, 2002, 277:1190-1194
[35]  35 Berthold D A, Voevodskaya N, Stenmark P, et al. EPR studies of the mitochondrial alternative oxidase:Evidence for a diiron carboxylate center. J Biol Chem, 2002, 277:43608-43614
[36]  36 Moore A L, Carré J E, Affourtit C, et al. Compelling EPR evidence that the alternative oxidase is a diiron carboxylate protein. Biochim Biophys Acta, 2008, 1777:327-333
[37]  37 Moore A L, Albury M S. Further insights into the structure of the alternative oxidase:From plants to parasites. Biochem Soc Trans, 2008, 36:1022-1026
[38]  38 Albury M S, Elliott C, Moore A L. Ubiquinol-binding site in the alternative oxidase:Mutagenesis reveals features important for substrate binding and inhibition. Biochim Biophys Acta, 2010, 1797:1933-1939
[39]  39 Affourtit C, Albury M S, Crichton P G, et al. Exploring the molecular nature of alternative oxidase regulation and catalysis. FEBS Lett, 2002, 510:121-126
[40]  40 Juszczuk I M, Rychter A M. Alternative oxidase in higher plants. Acta Biochim Pol, 2003, 50:1257-1271
[41]  41 Watling J R, Robinson S A, Seymour R S. Contribution of the alternative pathway to respiration during thermogenesis in flowers of the sacred lotus. Plant Physiol, 2006, 140:1367-1373
[42]  42 Grant N M, Miller R E, Watling J R, et al. Synchronicity of thermogenic activity, alternative pathway respiratory flux, AOX protein content, and carbohydrates in receptacle tissues of sacred lotus during floral development. J Exp Bot, 2008, 59:705-714
[43]  43 Chaimovich H, Martins L S, Silva M P, et al. PUMPing plants. Nature, 1995, 375:24
[44]  44 Laloi M, Klein M, Riesmeier J W, et al. A plant cold-induced uncoupling protein. Nature, 1997, 389:135-136
[45]  45 Ricquier D, Bouillaud F. The uncoupling protein homologues:UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J, 2000, 345:161-179
[46]  46 Krauss S, Zhang C Y, Lowell B B. The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol, 2005, 6:248-261
[47]  47 Vercesi A E, Borecky J, Maia I D G, et al. Plant uncoupling mitochondrial proteins. Annu Rev Plant Biol, 2006, 57:383-404
[48]  48 Cannon B, Nedergaard J. Brown adipose tissue:Function and physiological significance. Physiol Rev, 2004, 84:277-359
[49]  49 Ito K, Seymour R S. Expression of uncoupling protein and alternative oxidase depends on lipid or carbohydrate substrates in thermogenic plants. Biol Lett, 2005, 1:427-430
[50]  50 Ito-Inaba Y, Hida Y, Mori H, et al. Molecular identity of uncoupling proteins in thermogenic skunk cabbage. Plant Cell Physiol, 2008, 49:1911-1916
[51]  51 Ito-Inaba Y, Hida Y, Matsumura H, et al. The gene expression landscape of thermogenic skunk cabbage suggests critical roles for mitochondrial and vacuolar metabolic pathways in the regulation of thermogenesis. Plant Cell Environ, 2012, 35:554-566
[52]  52 Qi L W, Li X M, Zhang S Z, et al. Genetic regulation of non-coding RNA (in Chinese). Sci China Ser C:Life Sci, 2006, 3:193-208[齐力 旺, Li X M, 张守攻, 等. 非编码蛋白RNA 的遗传调控. 中国科学C 辑:生命科学, 2006, 3:193-
[53]  53 Xu Z H, Xie C X. Advances in plant microRNA and stresses response (in Chinese). Hereditas, 2010, 10:1018-1030[许振华, 谢传晓. 植 物microRNA 与逆境响应研究进展. 遗传, 2010, 10:1018-
[54]  54 Zhu Q H, Helliwell C A. Regulation of flowering time and floral patterning by miR172. J Exp Bot, 2010, 62:487-495
[55]  55 Curaba J, Spriggs A, Taylor J, et al. miRNA regulation in the early development of barley seed. BMC Plant Biol, 2012, 12:120
[56]  56 Liu X Y, Cao D C, Ji X Y, et al. miRNAs play essential roles in the floral thermogenesis of Magnolia denudata (Magnoliaceae). Trees, 2015, 29:35-42

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133