全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

羧基活化转化的机理及其在化学与生物体系中的应用

DOI: 10.1360/N972015-00899, PP. 3099-3105

Keywords: 羧基活化,机理,催化剂,多肽合成,硫酯

Full-Text   Cite this paper   Add to My Lib

Abstract:

羧基活化转化反应是有机化学的重要问题之一,同时在生物体系中也广泛存在,研究其机理具有广泛的意义.本文结合相关物理有机化学和生物化学原理,用势能面图从动力学和热力学2方面对该过程的过渡态和中间体进行分析讨论,同时考查了缩合过程使用催化剂与否对该过程的影响,提出各种羧基活化转化反应机理的一般规律.结合这一原理对比了化学活化与生物活化的异同,并对其在不同体系中的应用进行了评述,以期对发展新型羧基活化方式与物理有机化学教学提供有意义的参考.

References

[1]  1 Solomons T W G, Fryhle C B, Snyder S A. Organic Chemistry. New York:John Wiley & Sons, 2014
[2]  2 Jung G, Beck-Sickinger A G. Multiple peptide synthesis methods and their applications. New synthetic methods (87). Angew Chem Int Ed, 1992, 31:367-383
[3]  3 Kent S B H. Total chemical synthesis of proteins. Chem Soc Rev, 2009, 38:338-351
[4]  4 Marahiel M A, Stachelhaus T, Mootz H D. Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev, 1997, 97:2651-2674
[5]  5 Vora H U, Rovis T. Nucleophilic carbene and HOAt relay catalysis in an amide bond coupling:An orthogonal peptide bond forming reaction. J Am Chem Soc, 2007, 129:13796-13797
[6]  6 Shen B, Makley D M, Johnston J N. Umpolung reactivity in amide and peptide synthesis. Nature, 2010, 465:1027-1032
[7]  7 McMurry J E, Begley T. The Organic Chemistry of Biological Pathways. Greenwood Village:Roberts & Company Publishers, 2005
[8]  8 Offer J, Boddy C N C, Dawson P E. Extending synthetic access to proteins with a removable acyl transfer auxiliary. J Am Chem Soc, 2002, 124:4642-4646
[9]  9 Milton R C D, Milton S C, Kent S B H. Total chemical synthesis of a D-enzyme:The enantiomers of HIV-1 protease show reciprocal chiral substrate specificity. Science, 1992, 256:1445-1448
[10]  10 Wang Z P, Wang Y H, Chu G C, et al. The study of the chemical synthesis and preparation of histone with post-translational modifications. Curr Org Synth, 2015, 12:150-162
[11]  11 Williams A, Douglas K T. Elimination-addition mechanisms of acyl transfer reactions. Chem Rev, 1975, 75:627-649
[12]  12 Guthrie J P. Hydration of carbonyl compounds, an analysis in terms of multidimensional Marcus theory. J Am Chem Soc, 2000, 122:5529-5538
[13]  13 Gerlt J A, Gassman P G. Understanding the rates of certain enzyme-catalyzed reactions:Proton abstraction from carbon acids, acyltransfer reactions, and displacement reactions of phosphodiesters. Biochemistry, 1993, 32:11943-11952
[14]  14 Buncel E, Urn I H, Hoz S. Solvent-independent transition-state structure for acyl-transfer reactions. A novel strategy for construction of a Bronsted correlation. J Am Chem Soc, 1989, 111:971-975
[15]  15 Hengg A C, Hess R A. Concerted or stepwise mechanisms for acyl transfer reactions of p-nitrophenyl acetate? Transition state structures from isotope effects. J Am Chem Soc, 1994, 116:11256-11263
[16]  16 Ishida T, Kato S. Theoretical perspectives on the reaction mechanism of serine proteases:The reaction free energy profiles of the acylation process. J Am Chem Soc, 2003, 125:12035-12048
[17]  17 Xu S, Held I, Kempf B. The DMAP-catalyzed acetylation of alcohols-A mechanistic study (DMAP=4-(dimethylamino)pyridine). Chem Eur J, 2005, 11:4751-4757
[18]  18 Williams A. Concerted mechanisms of acyl group transfer reactions in solution. Acc Chem Res, 1989, 22:387-392
[19]  19 Parr R G, Pearson R G. Absolute hardness:Companion parameter to absolute electronegativity. J Am Chem Soc, 1983, 105:7512-7516
[20]  20 Dawson P E, Muir T W, Clark-Lewis I, et al. Synthesis of proteins by native chemical ligation. Science, 1994, 266:776-779
[21]  21 H?fle G, Steglich W, Vorbrüggen H. 4-Dialkylaminopyridines as highly active acylation catalysts. New synthetic method (25). Angew Chem Int Ed, 1978, 17:569-583
[22]  22 Yadav J S, Reddy B V S, Krishna A D, et al. Triphenylphosphine:An efficient catalyst for transesterification of β-ketoesters. J Mol Catly A Chem, 2007, 261:93-97
[23]  23 Muttenthaler M, Alewood P F. Selenopeptide chemistry. J Pept Sci, 2008, 14:1223-1239
[24]  24 Carter Jr C W. Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Ann Rev Biochem, 1993, 62:715-748
[25]  25 Carpino L A, El-Faham A, Minor C A, et al. Advantageous applications of azabenzotriazole (triazolopyridine)-based coupling reagents to solid-phase peptide synthesis. J Chem Soc Chem Comm, 1994, (2):201-203
[26]  26 Humphrey J M, Chamberlin A R. Chemical synthesis of natural product peptides:Coupling methods for the incorporation of noncoded amino acids into peptides. Chem Rev, 1997, 97:2243-2266
[27]  27 El-Faham A, Albericio F. Peptide coupling reagents, more than a letter soup. Chem Rev, 2011, 111:6557-6602
[28]  28 Merrifield R B. Solid phase peptide synthesis I. The synthesis of a tetrapeptide. J Am Chem Soc, 1963, 85:2149-2154
[29]  29 Izdebski J, Kunce D. Evaluation of carbodiimides using a competition method. J Pept Sci, 1997, 3:141-144
[30]  30 Carpino L A. 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive. J Am Chem Soc, 1993, 115:4397-4398
[31]  31 Nicolaou K C, Natarajan S, Li H, et al. Total synthesis of Vancomycin Aglycon Part 1:Synthesis of amino acids 4-7 and construction of the AB-COD ring skeleton. Angew Chem Int Ed, 1998, 37:2708-2714
[32]  32 East S P, Joullié M M. Synthetic studies of 14-membered cyclopeptide alkaloids. Tetrahedron Lett, 1998, 39:7211-7214
[33]  33 Zheng J S, Tang S, Huang Y C, et al. Development of new thioester equivalents for protein chemical synthesis. Acc Chem Res, 2013, 46:2475-2484
[34]  34 Jencks W P, Carriuolo J, Imidazole catalysis II. Acyl transfer and the reactions of acetyl imidazole with water and oxygen anions. J Biol Chem, 1959, 234:1272-1279
[35]  35 Yao Z P, Ren P D. The nucleophilicity of pyridine (in Chinese). Univ Chem, 1998, 13:53-56[姚子鹏, 任平达. 吡啶的亲核性. 大学化 学, 1998, 13:53-
[36]  36 Zheng J S, Tang S, Qi Y K, et al. Chemical synthesis of proteins using peptide hydrazides as thioester surrogates. Nat Protocols, 2013, 8:2483-2495
[37]  37 Sigel H, Martin R B. Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem Rev, 1982, 82:385-426
[38]  38 Menger F M. Enzyme reactivity from an organic perspective. Acc Chem Res, 1993, 26:206-212
[39]  39 Chang T Y, Chang C C, Cheng D. Acyl-coenzyme A:Cholesterol acyltransferase. Ann Rev Biochem, 1997, 66:613-638
[40]  40 Wulff K, Mecke D, Holzer H. Mechanism of the enzymatic inactivation of glutamine synthetase from E. coli. Biochem Biophys Res Commun, 1967, 28:740-745
[41]  41 Rudolph J, Stubbe J. Investigation of the mechanism of phosphoribosylamine transfer from glutamine phosphoribosylpyrophosphate amidotransferase to glycinamide ribonucleotide synthetase. Biochemistry, 1995, 34:2241-2250
[42]  42 Cedar H, Schwartz J H. The asparagine synthetase of Escherichia coli II. Studies on mechanism. J Biol Chem, 1969, 244:4122-4127
[43]  43 Xu M Q, Southworth M W, Mersha F B, et al. In-vitro protein splicing of purified precursor and the identification of a branched intermediate. Cell, 1993, 75:1371-1377
[44]  44 Vila-Perello M, Muir T W. Biological applications of protein splicing. Cell, 2010, 143:191-200
[45]  45 Muir T W, Sondhi D, Cole P A. Expressed protein ligation:A general method for protein engineering. Proc Natl Acad Sci USA, 1998, 95:6705-6710
[46]  46 Kang J, Macmillan D. Peptide and protein thioester synthesis via N→S acyl transfer. Org Biomol Chem, 2010, 8:1993-2002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133