1 Solomons T W G, Fryhle C B, Snyder S A. Organic Chemistry. New York:John Wiley & Sons, 2014
[2]
2 Jung G, Beck-Sickinger A G. Multiple peptide synthesis methods and their applications. New synthetic methods (87). Angew Chem Int Ed, 1992, 31:367-383
[3]
3 Kent S B H. Total chemical synthesis of proteins. Chem Soc Rev, 2009, 38:338-351
[4]
4 Marahiel M A, Stachelhaus T, Mootz H D. Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev, 1997, 97:2651-2674
[5]
5 Vora H U, Rovis T. Nucleophilic carbene and HOAt relay catalysis in an amide bond coupling:An orthogonal peptide bond forming reaction. J Am Chem Soc, 2007, 129:13796-13797
[6]
6 Shen B, Makley D M, Johnston J N. Umpolung reactivity in amide and peptide synthesis. Nature, 2010, 465:1027-1032
[7]
7 McMurry J E, Begley T. The Organic Chemistry of Biological Pathways. Greenwood Village:Roberts & Company Publishers, 2005
[8]
8 Offer J, Boddy C N C, Dawson P E. Extending synthetic access to proteins with a removable acyl transfer auxiliary. J Am Chem Soc, 2002, 124:4642-4646
[9]
9 Milton R C D, Milton S C, Kent S B H. Total chemical synthesis of a D-enzyme:The enantiomers of HIV-1 protease show reciprocal chiral substrate specificity. Science, 1992, 256:1445-1448
[10]
10 Wang Z P, Wang Y H, Chu G C, et al. The study of the chemical synthesis and preparation of histone with post-translational modifications. Curr Org Synth, 2015, 12:150-162
[11]
11 Williams A, Douglas K T. Elimination-addition mechanisms of acyl transfer reactions. Chem Rev, 1975, 75:627-649
[12]
12 Guthrie J P. Hydration of carbonyl compounds, an analysis in terms of multidimensional Marcus theory. J Am Chem Soc, 2000, 122:5529-5538
[13]
13 Gerlt J A, Gassman P G. Understanding the rates of certain enzyme-catalyzed reactions:Proton abstraction from carbon acids, acyltransfer reactions, and displacement reactions of phosphodiesters. Biochemistry, 1993, 32:11943-11952
[14]
14 Buncel E, Urn I H, Hoz S. Solvent-independent transition-state structure for acyl-transfer reactions. A novel strategy for construction of a Bronsted correlation. J Am Chem Soc, 1989, 111:971-975
[15]
15 Hengg A C, Hess R A. Concerted or stepwise mechanisms for acyl transfer reactions of p-nitrophenyl acetate? Transition state structures from isotope effects. J Am Chem Soc, 1994, 116:11256-11263
[16]
16 Ishida T, Kato S. Theoretical perspectives on the reaction mechanism of serine proteases:The reaction free energy profiles of the acylation process. J Am Chem Soc, 2003, 125:12035-12048
[17]
17 Xu S, Held I, Kempf B. The DMAP-catalyzed acetylation of alcohols-A mechanistic study (DMAP=4-(dimethylamino)pyridine). Chem Eur J, 2005, 11:4751-4757
[18]
18 Williams A. Concerted mechanisms of acyl group transfer reactions in solution. Acc Chem Res, 1989, 22:387-392
[19]
19 Parr R G, Pearson R G. Absolute hardness:Companion parameter to absolute electronegativity. J Am Chem Soc, 1983, 105:7512-7516
[20]
20 Dawson P E, Muir T W, Clark-Lewis I, et al. Synthesis of proteins by native chemical ligation. Science, 1994, 266:776-779
[21]
21 H?fle G, Steglich W, Vorbrüggen H. 4-Dialkylaminopyridines as highly active acylation catalysts. New synthetic method (25). Angew Chem Int Ed, 1978, 17:569-583
[22]
22 Yadav J S, Reddy B V S, Krishna A D, et al. Triphenylphosphine:An efficient catalyst for transesterification of β-ketoesters. J Mol Catly A Chem, 2007, 261:93-97
[23]
23 Muttenthaler M, Alewood P F. Selenopeptide chemistry. J Pept Sci, 2008, 14:1223-1239
[24]
24 Carter Jr C W. Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Ann Rev Biochem, 1993, 62:715-748
[25]
25 Carpino L A, El-Faham A, Minor C A, et al. Advantageous applications of azabenzotriazole (triazolopyridine)-based coupling reagents to solid-phase peptide synthesis. J Chem Soc Chem Comm, 1994, (2):201-203
[26]
26 Humphrey J M, Chamberlin A R. Chemical synthesis of natural product peptides:Coupling methods for the incorporation of noncoded amino acids into peptides. Chem Rev, 1997, 97:2243-2266
[27]
27 El-Faham A, Albericio F. Peptide coupling reagents, more than a letter soup. Chem Rev, 2011, 111:6557-6602
[28]
28 Merrifield R B. Solid phase peptide synthesis I. The synthesis of a tetrapeptide. J Am Chem Soc, 1963, 85:2149-2154
[29]
29 Izdebski J, Kunce D. Evaluation of carbodiimides using a competition method. J Pept Sci, 1997, 3:141-144
[30]
30 Carpino L A. 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive. J Am Chem Soc, 1993, 115:4397-4398
[31]
31 Nicolaou K C, Natarajan S, Li H, et al. Total synthesis of Vancomycin Aglycon Part 1:Synthesis of amino acids 4-7 and construction of the AB-COD ring skeleton. Angew Chem Int Ed, 1998, 37:2708-2714
[32]
32 East S P, Joullié M M. Synthetic studies of 14-membered cyclopeptide alkaloids. Tetrahedron Lett, 1998, 39:7211-7214
[33]
33 Zheng J S, Tang S, Huang Y C, et al. Development of new thioester equivalents for protein chemical synthesis. Acc Chem Res, 2013, 46:2475-2484
[34]
34 Jencks W P, Carriuolo J, Imidazole catalysis II. Acyl transfer and the reactions of acetyl imidazole with water and oxygen anions. J Biol Chem, 1959, 234:1272-1279
[35]
35 Yao Z P, Ren P D. The nucleophilicity of pyridine (in Chinese). Univ Chem, 1998, 13:53-56[姚子鹏, 任平达. 吡啶的亲核性. 大学化 学, 1998, 13:53-
[36]
36 Zheng J S, Tang S, Qi Y K, et al. Chemical synthesis of proteins using peptide hydrazides as thioester surrogates. Nat Protocols, 2013, 8:2483-2495
[37]
37 Sigel H, Martin R B. Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem Rev, 1982, 82:385-426
[38]
38 Menger F M. Enzyme reactivity from an organic perspective. Acc Chem Res, 1993, 26:206-212
[39]
39 Chang T Y, Chang C C, Cheng D. Acyl-coenzyme A:Cholesterol acyltransferase. Ann Rev Biochem, 1997, 66:613-638
[40]
40 Wulff K, Mecke D, Holzer H. Mechanism of the enzymatic inactivation of glutamine synthetase from E. coli. Biochem Biophys Res Commun, 1967, 28:740-745
[41]
41 Rudolph J, Stubbe J. Investigation of the mechanism of phosphoribosylamine transfer from glutamine phosphoribosylpyrophosphate amidotransferase to glycinamide ribonucleotide synthetase. Biochemistry, 1995, 34:2241-2250
[42]
42 Cedar H, Schwartz J H. The asparagine synthetase of Escherichia coli II. Studies on mechanism. J Biol Chem, 1969, 244:4122-4127
[43]
43 Xu M Q, Southworth M W, Mersha F B, et al. In-vitro protein splicing of purified precursor and the identification of a branched intermediate. Cell, 1993, 75:1371-1377
[44]
44 Vila-Perello M, Muir T W. Biological applications of protein splicing. Cell, 2010, 143:191-200
[45]
45 Muir T W, Sondhi D, Cole P A. Expressed protein ligation:A general method for protein engineering. Proc Natl Acad Sci USA, 1998, 95:6705-6710
[46]
46 Kang J, Macmillan D. Peptide and protein thioester synthesis via N→S acyl transfer. Org Biomol Chem, 2010, 8:1993-2002