|
科学通报 1983
渐近Putnam-Fuglede定理, PP. 961-963 Abstract: 在文献[1]中,我们将正常算子的Putnam-Fuglede定理推广到亚正常算子,证明了若T_1,T_2~*是亚正常算子,而X满足T_1X=XT_2。那么必有T_1~*X=XT_2~*,而且还证明一些其它形式。在文献[2]中,Moore将正常算子的Putnam-Fuglede定理推广为若N_1、N_2为正常算子,X_n是有界的算子序列,满足‖N_1X_n-X_nN_2‖→0,那么必有‖N_1~*X_n-X_nN_2~*‖→0。最近有人利用次正常算子的正常延拓证明了
|