1. Haapala I, Ramo O T. Tectonic setting and origin of the Proterozoic rapakivi granites of the southeastern Fennoscandia. Trans Roy Soc Edinburgh Earth Sci, 1992, 83: 165-171
[2]
3. Ramo O T, Haapala I. One hundred years of rapakivi granite. Miner Petrol, 1995, 52: 129-185
[3]
4. Vaino P, Floden T. Rapakivi-granite-anorthosite magmatism..A way of thinning and stabilization of the Svecofennian crust, Baltic Sea Basin. Tectonophysics, 1999, 305: 75-92
[4]
5. Ramo O T, Haapala I, Vaasjoki M, et al. 1700 Ma Shachang complex, northeast China: Proterozoic rapakivi granite not associated with Paleoprozoic orogenic crust. Geology, 1995, 23: 815-818
8. Vigneresse J L. The specific case of the Mid-Proterozoic rapakivi granites and associated suite within the context of the Columbia supercontinent. Precambrian Res, 2005, 137: 1-34
[7]
9. Dall'Agnol R, Teixeira N P, Ramo O T, et al. Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajas metallogenic province, Brazil. Lithos, 2005, 80: 101-129
11. 赵国春, 孙敏, Wilde S A. 早-中元古代Columbia 超级大陆研究进展. 科学通报, 2002, 47: 1361-1364
[10]
17. Guo J H, Sun M, Chen F K, et al. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision. J Asian Earth Sci, 2005, 24: 629-642
[11]
18. Wan Y S, Song B, Liu D Y, et al. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Res, 2006, 149: 249-271
[12]
23. Kusky T, Li J H, Santosh M. The Paleoproterozoic North Hebei Orogen: North China craton乫s collisional suture with the Columbia supercontinent. Gondwana Res, 2007, 12: 4-28
[13]
26. Gao S, Ling W L, Qiu Y M, et al. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochim Cosmochim Acta, 1999, 63: 2071-2088
[14]
27. Qiu Y M, Gao S, McNaughton N J, et al. First evidence of >3-2 Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 2000, 28: 11-14
[15]
30. Zheng J P, Griffin W L, O乫Reilly S Y, et al. Widespread Archean basement beneath the Yangtze craton. Geology, 2006, 34: 417-420
45. Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. J Petrol, 2010, 51: 537-571
[21]
46. Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem Geol, 2002, 192: 59-79
[22]
47. Ludwig K R. Users manual for Isoplot 3-00: A geochronological toolkit for Microsoft Exccel. Berkeley Geochron Cent Spec Publ, 2003, 4: 1-70
[23]
50. McDonough W F, Sun S S. The composition of the Earth. Chem Geol, 1995, 120: 223-253
53. Pelleter E, Cheilletz A, Gasquet D, et al. Hydrothermal zircons: A tool for ion microprobe U-Pb dating of gold mineralization (Tamlalt- Menhouhou gold deposit-Morocco). Chem Geol, 2007, 245: 135-161
57. Ling W L, Gao S, Zhang B R, et al. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: Implications for amalgamation and break-up of the Rodinia Supercontinent. Precambrian Res, 2003, 122: 111-140
[28]
60. Zhou J C, Wang X L, Qiu J S. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: Coeval arc magmatism and sedimentation. Precambrian Res, 2009, 170: 27-42
[29]
61. Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Res, 2003, 122: 85-109
[30]
62. Wang L J, Griffin W L, Yu J H, et al. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks. Precambrian Res, 2010, 177: 131-144
64. Wark D A, Stimac J A. Origin of mantled (rapakivi) feldspars: Experimental evidence of a dissolution and diffusion-controlled mechanism. Contrib Miner Petrol, 1992, 111: 345-361
[33]
66. Eklund O, Shebanov A D. The origin of rapakivi texture by sub-isothermal decompression. Precambrian Res, 1999, 95: 129-146
68. Christiansen E H, Haapala I, Hart G L. Are Cenozoic topaz rhyolites the erupted equivalents of Proterozoic rapakivi granites? Examples from the western United States and Finland. Lithos, 2007, 97: 219-246
[36]
70. Zhao G C, Sun M, Wilde S A, et al. Some key issues in reconstructions of Proterozoic supercontinents. J Asian Earth Sci, 2006, 28: 3-19
82. 高山, Qiu Y M, 凌文黎. 崆岭高级变质地体单颗粒锆石SHRIMP U-Pb 年代学研究——扬子克拉通>3-2 Ga 陆壳物质的发现. 中国科 学D 辑: 地球科学, 2001, 31: 27-35
[42]
83. Zhang S B, Zheng Y F, Wu Y B, et al. Zircon isotope evidence for.3-5 Ga continental crust in the Yangtze craton of China. Precambrian Res, 2006, 146: 16-34
[43]
2. Haapala I, Ramo O T. Rapakivi granites and related rocks: An introduction. Precambrian Res, 1999, 95: 1-7
12. Zhao G C, Cawood P A, Wilde S A, et al. Review of global 2-1.1-8 Ga orogens: Implications for a pre-Rodinia supercontinent. Earth Sci Rev, 2002, 59: 125-162
[46]
13. Rogers J J W, Santosh M. Cofiguration of Columbia: A Mesoproterozoic supercontinent. Gondwana Res, 2002, 5: 5-22
[47]
14. Wang Y J, Fan W M, Zhang Y H. Geochemical, 40Ar/39Ar geochronological and Sr-Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca.1800 Ma event of the North China Craton. Precambrian Res, 2004, 135: 55-77
[48]
15. Wang Y J, Zhao G C, Fan W M, et al. LA-ICP-MS U-Pb zircon geochronology and geochemistry of Paleoproterozoic mafic dikes from western Shandong Province: Implications for back-arc basin magmatism in the Eastern Block, North China Craton. Precambrian Res, 2007, 154: 107-124
[49]
16. Zhai M G, Liu W J. Palaeoproterozoic tectonic history of the North China craton: A review. Precambrian Res, 2003, 122: 183-199
[50]
19. Peng P, Zhai M G, Ernst R E, et al. A 1-78 Ga large igneous province in the North China craton: The Xiong乫er Volcanic Province and the North China dyke swarm. Lithos, 2008, 101: 260-280
[51]
20. Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res, 2005, 136: 177-202
[52]
21. Hou G T, Santosh M, Qian X L, et al. Tectonic constraints on 1-3.1-2 Ga final breakup of Columbia supercontinent from a giant radiating dyke swarm. Gondwana Res, 2008, 14: 516-566
[53]
22. Hou G T, Santosh M, Qian X L, et al. Configuration of the Late Paleoproterozoic supercontinent Columbia: Insights from radiating mafic dyke swarms. Gondwana Res, 2008, 14: 395-409
[54]
24. Zhang S H, Liu S W, Zhao Y, et al. The 1-75.1-68 Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogen. Precambrian Res, 2007, 155: 287-312
28. Zhang S B, Zheng Y F, Zhao Z F, et al. Origin of TTG-like rocks from anatexis of ancient lower crust: Geochemical evidence from Neoproterozoic granitoids in South China. Lithos, 2009, 113: 347-368
[57]
29. Wu Y B, Zheng Y F, Gao S, et al. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos, 2008, 101: 308-322
34. Zhang S B, Zheng Y F, Wu Y B, et al. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Res, 2006, 151: 265-288
[62]
35. Wu Y B, Gao S, Gong H J, et al. Zircon U-Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton: Refining the timing of Palaeoproterozoic high-grade metamorphism. J Metamorphic Geol, 2009, 27: 461-477
38. Zhao G C, Sun M, Wilde S A, et al. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth Sci Rev, 2004, 67: 91-123
[65]
40. Sederholm J J. Ueber die finnlandischen Rapakiwigesteine. Tschermaks Mineral Petrogr Mitt, 1891, 12: 1-31
[66]
43. Gao S, Zhang B R, Gu X M, et al. Silurian-Devonian provenance changes of South Qinling basins: Implications for accretion of the Yangtze (South China) to the North China cratons. Tectonophysics, 1995, 250: 183-197
[67]
44. Zhang H F, Gao S, Zhong Z Q, et al. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids: Constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chem Geol, 2002, 186: 281-299
[68]
48. Whalen J B, Currie K L, Chappell B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib Miner Petrol, 1987, 95: 407-419
[69]
49. Haapala I, Ramo O T, Frindt S. Comparison of Proterozoic and Phanerozoic rift-related basaltic-granitic magmatism. Lithos, 2005, 80: 1-32
[70]
52. Hoskin P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim Cosmochim Acta, 2005, 69: 637-648
58. Li X H, Li W X, Qiu L L, et al. Petrogenesis and tectonic significance of the 850 Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry. Lithos, 2010, 114: 1-15
[74]
59. Wang X L, Zhou J C, Qiu J S, et al. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: Implications for tectonic evolution. Precambrian Res, 2006, 145: 111-130
[75]
65. Nekvasil H. Ascent of felsic magmas and formation of rapakivi. Am Miner, 1991, 76: 1279-1290
[76]
69. Zhao G C. Palaeoproterozoic assembly of the North China Craton. Geol Mag, 2001, 138: 87-91
[77]
71. Condie K C. Episodic continental growth models: Afterthoughts and extensions. Tectonophysics, 2000, 322: 153-162
[78]
72. Condie K C. Episodic continental growth and supercontinents: A mantle avalanche connection? Earth Planet Sci Let, 1998, 163: 97-108
[79]
73. Condie K C, Des Marais D J, Abbott D. Precambrian superplumes and supercontinents: A record in black shales, carbon isotopes, and paleoclimates? Precambrian Res, 2001, 106: 239-260
[80]
74. Liu X M, Gao S, Diwu C R, et al. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies. Am J Sci, 2008, 308: 421-468
77. Jian P, Zhang Z C, Zhu J P, et al. The Dabie basement older than 2800 Ma: Evidence from the zircon age of granulite from Huangtuling. Acta Geosci Sin, 1997, 18: 65-67
84. Yu J H, Wang L J, O'Reilly S Y, et al. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant(Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Res, 2009, 174: 347-363
[85]
85. Li X H. Timing of the Cathaysia block formation: Constraints from SHRIMP U-Pb zircon geochronology. Episodes, 1997, 20: 188-192
[86]
86. Wan Y S, Liu D Y, Xu M H, et al. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia Block, China: Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Res, 2007, 12: 166-183
[87]
87. Li Z X, Li X H, Wartho J A, et al. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai Orogeny, southeastern South China: New age constraints and pressure-temperature conditions. GSA Bull, 2010, 122: 772-793