全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

换热器组传热性能的优化原理比较

, PP. 79-84

Keywords: 换热器组,优化原理,火积,耗散极大,熵产最小

Full-Text   Cite this paper   Add to My Lib

Abstract:

换热器组内的传热过程目的一般可以分为两类一类是为了热功转换,另一类是为了加热或者冷却物体.相应地,传热过程也包含熵产最小以及火积耗散极大这两种不同的优化原理.通过分析换热器组内的传热过程,并在一定约束条件下利用不同的原理对换热器组的面积分配进行优化,得出熵产最小原理适用于包含在热力循环中的换热器优化问题,而火积耗散极大原理则更适合分析仅涉及传热过程的换热器优化问题.并且,在使用熵产最小原理优化热力循环中的换热器时,除了需要考虑冷、热端换热器产生的熵产外,也应考虑乏汽排放到外部环境引起的熵产.

References

[1]  2. Bergles A E. Heat transfer enhancement-The maturing of second-generation heat transfer technology. Heat Transf Eng, 1997, 18: 47-55??
[2]  3. Zimparov V. Energy conservation through heat transfer enhancement techniques. Int J Energy Res, 2002, 26: 675-696??
[3]  5. Bejan A. The concept of irreversibility in heat exchanger design: Counterflow heat exchangers for gas.to.gas applications. J Heat Transf-Trans ASME, 1977, 99: 374-380??
[4]  6. Bejan A. Entropy Generation Minimization. Florida: CRC Press, 1996
[5]  7. Poulikakos D, Bejan A. Fin geometry for minimum entropy generation in forced convection. J Heat Transf-Trans ASME, 1982, 104: 616- 623??
[6]  8. Grazzini G, Gori F. Entropy parameters for heat exchanger design. Int J Heat Mass Transf, 1988, 31: 2547-2554??
[7]  9. Sekulic D P, Campo A, Morales J C. Irreversibility phenomena associated with heat transfer and fluid friction in laminar flows through singly connected ducts. Int J Heat Mass Transf, 1997, 40: 905-914??
[8]  11. Johannessen E, Nummedal L, Kjelstrup S. Minimizing the entropy production in heat exchange. Int J Heat Mass Transf, 2002, 45: 2649- 2654??
[9]  12. Balkan F. Comparison of entropy minimization principles in heat exchange and a short-cut principle: EoTD. Int J Energy Res, 2003, 27: 1003-1014??
[10]  14. Erek A, Dincer I. An approach to entropy analysis of a latent heat storage module. Int J Therm Sci, 2008, 47: 1077-1085??
[11]  15. Hesselgreaves J E. Rationalisation of second law analysis of heat exchangers. Int J Heat Mass Transf, 2000, 43: 4189-4204??
[12]  16. Shah R K, Skiepko T. Entropy generation extrema and their relationship with heat exchanger effectiveness-Number of transfer unit behavior for complex flow arrangements. J Heat Transf-Trans ASME, 2004, 126: 994-1002??
[13]  17. Guo Z Y, Zhu H Y, Liang X G. Entransy-A physical quantity describing heat transfer ability. Int J Heat Mass Transf, 2007, 50: 2545- 2556??
[14]  21. Chen Q, Ren J, Meng J A. Field synergy equation for turbulent heat transfer and its application. Int J Heat Mass Transf, 2007, 50: 5334- 5339??
[15]  26. 郭江峰, 程林, 许明田. 火积 耗散数及其应用. 科学通报, 2009, 54: 2998-3002
[16]  27. 柳雄斌, 孟继安, 过增元. 换热器参数优化中的熵产极值和火积耗散极值. 科学通报, 2008, 53: 3026-3029
[17]  28. 夏少军, 陈林根, 孙丰瑞. T 型腔火积 耗散最小构形优化. 科学通报, 2009, 54: 2605-2612
[18]  30. Bejan A. Entropy Generation Through Heat and Fluid Flow. New York: Wiley, 1982
[19]  1. Bergles A E. Some perspectives on enhanced heat transfer-2nd-generation heat transfer technology. J Heat Transf-Trans ASME, 1988, 110: 1082-1096??
[20]  4. Kreuzer H J. Nonequilibrium Thermodynamics and its Statistical Foundations. Oxford: Clarendon Press, 1981
[21]  10. Sara O N, Yapici S, Yilmaz M, et al. Second law analysis of rectangular channels with square pin-fins. Int Commun Heat Mass Transf, 2001, 28: 617-630??
[22]  13. Ko T H. Numerical analysis of entropy generation and optimal Reynolds number for developing laminar forced convection in double-sine ducts with various aspect ratios. Int J Heat Mass Transf, 2006, 49: 718-726??
[23]  18. 过增元, 程新广, 夏再忠. 最小热量传递势容耗散原理及其在导热优化中的应用. 科学通报, 2003, 48: 21-25
[24]  19. 谢志辉, 陈林根, 孙丰瑞. T 型腔火积 耗散最小构形优化. 科学通报, 2009, 54: 2605-2612
[25]  20. Xia S, Chen L, Sun F. Entransy dissipation minimization for liquid-solid phase change processes. Sci China Technol Sci, 2010, 53: 960- 968??
[26]  22. 陈群, 任建勋. 对流换热过程的广义热阻及其与火积 耗散的关系. 科学通报, 2008, 53: 1730-1736
[27]  23. Meng J A, Liang X G, Li Z X. Field synergy optimization and enhanced heat transfer by multi-longitudinal vortexes flow in tube. Int J Heat Mass Transf, 2005, 48: 3331-3337??
[28]  24. Chen Q, Wang M, Pan N, et al. Optimization principles for convective heat transfer. Energy, 2009, 34: 1199-1206??
[29]  25. 吴晶, 梁新刚. 火积 耗散极值原理在辐射换热优化中的应用. 中国科学E 辑: 技术科学, 2009, 39: 272-277
[30]  29. Meng J A, Liang X G, Chen Z J, et al. Experimental study on convective heat transfer in alternating elliptical axis tubes. Exp Therm Fluid Sci, 2005, 29: 457-465??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133