Bahn Y S, Mühlschlegel F A. CO2 sensing in fungi and beyond. Curr Opin Microbiol, 2006, 9: 572-578572 [2] Robinson D, Conroy J P. A possible plant-mediated feedback between elevated CO2, denitrification and the enhanced greenhouse effect.Soil Biol Biochem, 1999, 31: 43-5343 [3] Coates E L. Olfactory CO2 chemoreceptors. Respir Physiol, 2001, 129: 219-229219 [4] Pearson P N, Palmer M R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 2000, 406: 695-699695 [5] Young J M, Waters H, Dong C, et al. Degeneration of the olfactory guanylyl cyclase D gene during primate evolution. PLoS One, 2007, 2:e884 [6] Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature,2000, 408: 184-187184 [7] Hu J, Zhong C, Ding C, et al. Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science, 2007,317: 953-957953 [8] Sun L, Wang H, Hu J, et al. Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. Proc Natl Acad Sci USA, 2009,106: 2041-20462041 [9] Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol, 1990, 215: 403-410403 [10] Cartmill M. Primate classification and diversity. In: Platt M, Ghazanfar A, eds. Primate Neuroethology. New York: Oxford UniversityPress, 2010. 16-1816 [11] Ramu C, Sugawara H, Koike T, et al. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res, 2003, 31:3497-35003497 [12] Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics,2006, 22: 2688-26902688 [13] Price M N. Fast Tree-Comparison Tools. http: //www.microbesonline.org/fasttree/treecmp.html [14] Soria-Carrasco V, Talavera G, Igea J, et al. The K tree score: Quantification of differences in the relative branch length and topology ofphylogenetic trees. Bioinformatics, 2007, 23: 2954-29562954 [15] Kumar S, Dudley J, Nei M, et al. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. BriefBioinform, 2008, 9: 299-306299 [16] Chessel D, Dufour A B, Thioulouse J. The ade4 package-Ⅰ: One-table methods. R News, 2004, 4: 5-105 [17] Dray S, Dufour A B, Chessel D. The ade4 package-Ⅱ: Two-table and K-table methods. R News, 2007, 7: 47-5247 [18] Sampaio M, Schneider M, Barroso C, et al. Carbonic anhydrase Ⅱ in new world monkeys. Folia Primatol, 1991, 12: 389-402389 [19] Opazo J C, Wildman D E, Prychitko T, et al. Phylogenetic relationships and divergence times among New World monkeys (Platyrrhini,Primates). Mol Phylogenet Evol, 2006, 40: 274-280274 [20] Tashian R E. The carbonic anhydrasees: Widening perspectives on their evolution, expression and function. BioEssays, 1989, 10: 186.192
[2]
Bahn Y S, Mühlschlegel F A. CO2 sensing in fungi and beyond. Curr Opin Microbiol, 2006, 9: 572-578572
[3]
Robinson D, Conroy J P. A possible plant-mediated feedback between elevated CO2, denitrification and the enhanced greenhouse effect.Soil Biol Biochem, 1999, 31: 43-5343
[4]
Coates E L. Olfactory CO2 chemoreceptors. Respir Physiol, 2001, 129: 219-229219
[5]
Pearson P N, Palmer M R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 2000, 406: 695-699695
[6]
Young J M, Waters H, Dong C, et al. Degeneration of the olfactory guanylyl cyclase D gene during primate evolution. PLoS One, 2007, 2:e884
[7]
Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature,2000, 408: 184-187184
[8]
Hu J, Zhong C, Ding C, et al. Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science, 2007,317: 953-957953
[9]
Sun L, Wang H, Hu J, et al. Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. Proc Natl Acad Sci USA, 2009,106: 2041-20462041
[10]
Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol, 1990, 215: 403-410403
[11]
Cartmill M. Primate classification and diversity. In: Platt M, Ghazanfar A, eds. Primate Neuroethology. New York: Oxford UniversityPress, 2010. 16-1816
[12]
Ramu C, Sugawara H, Koike T, et al. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res, 2003, 31:3497-35003497
[13]
Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics,2006, 22: 2688-26902688
[14]
Price M N. Fast Tree-Comparison Tools. http: //www.microbesonline.org/fasttree/treecmp.html
[15]
Soria-Carrasco V, Talavera G, Igea J, et al. The K tree score: Quantification of differences in the relative branch length and topology ofphylogenetic trees. Bioinformatics, 2007, 23: 2954-29562954
[16]
Kumar S, Dudley J, Nei M, et al. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. BriefBioinform, 2008, 9: 299-306299
[17]
Chessel D, Dufour A B, Thioulouse J. The ade4 package-Ⅰ: One-table methods. R News, 2004, 4: 5-105
[18]
Dray S, Dufour A B, Chessel D. The ade4 package-Ⅱ: Two-table and K-table methods. R News, 2007, 7: 47-5247
[19]
Sampaio M, Schneider M, Barroso C, et al. Carbonic anhydrase Ⅱ in new world monkeys. Folia Primatol, 1991, 12: 389-402389
[20]
Opazo J C, Wildman D E, Prychitko T, et al. Phylogenetic relationships and divergence times among New World monkeys (Platyrrhini,Primates). Mol Phylogenet Evol, 2006, 40: 274-280274
[21]
Tashian R E. The carbonic anhydrasees: Widening perspectives on their evolution, expression and function. BioEssays, 1989, 10: 186.192