全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

细胞色素P450配体通道的研究进展

, PP. 189-197

Keywords: 细胞色素P450,分子动力学,拉伸动力学,随机加速动力学,定点突变

Full-Text   Cite this paper   Add to My Lib

Abstract:

细胞色素P450(CYP)是一类含亚铁血红素的酶,不但能催化内源性底物的生物合成和代谢,而且对外源性化合物的代谢、激活以及降解毒性等起着重要作用.P450也是人体内最主要的药物代谢酶,能催化代谢约75%的临床药物.已有的P450酶晶体结构显示,绝大多数酶呈现闭合的构象,其催化活性位点位于血红素上方且深埋于蛋白质的中心,没有明显的通道用于配体进出活性中心.因此一个有趣而重要的问题是,配体如何进出酶的活性中心达到被氧化或发生抑制作用?近年来,关于P450酶配体通道的研究取得了显著进展.本文重点综述了通道研究的实验方法及6类P450酶可能存在的通道和作用机制,并对其未来的发展方向进行了展望.

References

[1]  1 Guengerich F P. Cytochrome P450 and chemical toxicology. Chem Res Toxicol, 2008, 21: 70-8370??
[2]  2 Meunier B, de Visser S P, Shaik S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem Rev, 2004, 104:3947-39803947??
[3]  3 Shaik S, Kumar D, de Visser S P, et al. Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. Chem Rev,2005, 105: 2279-23282279??
[4]  4 Jiang H L, Tan X S. Human hepatic cytochrome P450 2C metalloenzymes and drug metabolism. Prog Chem, 2009, 21: 911-918911
[5]  5 Lüdemann S K, Lounnas V, Wade R C. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1.Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J Mol Biol, 2000, 303: 797-811797??
[6]  8 Domanski T L, Halpert J R. Analysis of mammalian cytochrome P450 structure and function by site-directed mutagenesis. Curr DrugMetab, 2001, 2: 117-137117
[7]  9 Voss N R, Gerstein M, Steitz T A, et al. The geometry of the ribosomal polypeptide exit tunnel. J Mol Biol, 2006, 360: 893-906893??
[8]  12 Petrek M, Otyepka M, Banas P, et al. CAVER: A new tool to explore routes from protein clefts, pockets and cavities. BMCBioinformatics, 2006, 7: 316-324316
[9]  13 Carlsson P, Burendahl S, Nilsson L. Unbinding of retinoic acid from the retinoic acid receptor by random expulsion molecular dynamics.Biophys J, 2006, 91: 3151-31613151??
[10]  15 Schleinkofer K, Sudarko, Winn P J, et al. Do mammalian cytochrome P450s show multiple ligand access pathways and ligandchannelling? Embo Rep, 2005, 6: 584-589584
[11]  18 Saiki R K, Gelfand D H, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science,1988, 239: 487-491487??
[12]  20 Lee Y T, Wilson R F, Rupniewski I, et al. P450cam visits an open conformation in the absence of substrate. Biochemistry, 2010, 49:3412-34193412??
[13]  21 Poulos T L, Finzel B C, Howard A J. High-resolution crystal structure of cytochrome P450cam. J Mol Biol, 1987, 195: 687-700687??
[14]  22 Deprez E, Gerber N C, Di Primo C, et al. Electrostatic control of the substrate access channel in cytochrome P-450cam. Biochemistry,1994, 33: 14464-1446814464??
[15]  26 Li H, Poulos T L. The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. NatStruct Biol, 1997, 4: 140-146140
[16]  27 Winn P J, Lüdemann S K, Gauges R, et al. Comparison of the dynamics of substrate access channels in three cytochrome P450s revealsdifferent opening mechanisms and a novel functional role for a buried arginine. Proc Natl Acad Sci USA, 2002, 99: 5361-53665361??
[17]  30 Wester M R, Johnson E F, Marques-Soares C, et al. Structure of a substrate complex of mammalian cytochrome P450 2C5 at 2.3 .resolution: Evidence for multiple substrate binding modes. Biochemistry, 2003, 42: 6370-63796370
[18]  31 Scott E E, He Y Q, Halpert J R. Substrate routes to the buried active site may vary among cytochromes P450: Mutagenesis of the F-Gregion in P4502B1. Chem Res Toxicol, 2002, 15: 1407-14131407??
[19]  35 Podust L M, Poulos T L, Waterman M R. Crystal structure of cytochrome P450 14alpha-sterol demethylase (CYP51) from Mycobacteriumtuberculosis in complex with azole inhibitors. Proc Natl Acad Sci USA, 2001, 98: 3068-30733068??
[20]  36 Lee D S, Yamada A, Sugimoto H, et al. Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450from Bacillus subtilis —— Crystallographic, spectroscopic, and mutational studies. J Biol Chem, 2003, 278: 9761-97679761??
[21]  38 Williams P A, Cosme J, Sridhar V, et al. Mammalian microsomal cytochrome P450 monooxygenase: Structural adaptations for membranebinding and functional diversity. Mol Cell, 2000, 5: 121-131121??
[22]  39 Williams P A, Cosme J, Sridhar V, et al. Microsomal cytochrome P4502C5: Comparison to microbial P450s and unique features. J InorgBiochem, 2000, 81: 183-190183
[23]  40 Wester M R, Johnson E F, Marques-Soares C, et al. Structure of mammalian cytochrome P4502C5 complexed with diclofenac at 2.1angstrom resolution: Evidence for an induced fit model of substrate binding. Biochemistry, 2003, 42: 9335-93459335
[24]  42 Williams P A, Cosme J, Vinkovic D M, et al. Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone.Science, 2004, 305: 683-686683??
[25]  43 Li W H, Liu H, Luo X M, et al. Possible pathway(s) of metyrapone egress from the active site of cytochrome P450 3A4: A moleculardynamics simulation. Drug Metab Dispos, 2007, 35: 689-696689??
[26]  44 Khan K K, He Y Q, Domanski T L, et al. Midazolam oxidation by cytochrome P450 3A4 and active-site mutants: An evaluation ofmultiple binding sites and of the metabolic pathway that leads to enzyme inactivation. Mol Pharmacol, 2002, 61: 495-506495??
[27]  45 Yun C H, Shimada T, Guengerich F P. Purification and characterization of human liver microsomal cytochrome P-450 2A6. MolPharmacol, 1991, 40: 679-685679
[28]  46 Li W, Shen J, Tang Y, et al. Exploring coumarin egress channels in human cytochrome P450 2A6 by random acceleration and steeredmolecular dynamics simulations. Proteins, 2011, 79: 271-281??
[29]  6 Lüdemann S K, Lounnas V, Wade R C. How do substrates enter and products exit the buried active site of cytochrome P450cam? 2.Steered molecular dynamics and adiabatic mapping of substrate pathways. J Mol Biol, 2000, 303: 813-830813??
[30]  7 Wade R C, Winn P J, Schlichting E, et al. A survey of active site access channels in cytochromes P450. J Inorg Biochem, 2004, 98:1175-11821175??
[31]  10 Gouaux E, MacKinnon R. Principles of selective ion transport in channels and pumps. Science, 2005, 310: 1461-14651461??
[32]  11 Petrek M, Kosinova P, Koca J, et al. MOLE: A voronoi diagram-based explorer of molecular channels, pores, and tunnels. Structure,2007, 15: 1357-13631357??
[33]  14 Burendahl S, Danciulescu C, Nilsson L. Ligand unbinding from the estrogen receptor: A computational study of pathways and ligandspecificity. Proteins, 2009, 77: 842-856842??
[34]  16 Liu X, Wang X, Jiang H. A steered molecular dynamics method with direction optimization and its applications on ligand moleculedissociation. J Biochem Biophys Methods, 2008, 70: 857-864857??
[35]  17 Carugo O, Argos P. Accessibility to internal cavities and ligand binding sites monitored by protein crystallographic thermal factors.Proteins, 1998, 31: 201-213201??
[36]  19 Saiki R K, Scharf S, Faloona F, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosisof sickle cell anemia. Science, 1985, 230: 1350-13541350??
[37]  23 Wade R, Cojocaru V, Winn P J. The ins and outs of cytochrome P450s: Structure and dynamics. Biophys J, 2007: 374-375374
[38]  24 Lüdemann S K, Carugo O, Wade R C. Substrate access to cytochrome P450cam: A comparison of a thermal motion pathway analysis withmolecular dynamics simulation data. J Mol Model, 1997, 3: 1-51??
[39]  25 Ravichandran K G, Boddupalli S S, Hasermann C A, et al. Crystal structure of hemoprotein domain of P450BM-3, a prototype formicrosomal P450’s. Science, 1993, 261: 731-736731??
[40]  28 Poulos T L. Cytochrome P450 flexibility. Proc Natl Acad Sci USA, 2003, 100: 13121-1312213121??
[41]  29 Li W, Liu H, Scott E E, et al. Possible pathway(s) of testosterone egress from the active site of cytochrome P450 2B1: A steered moleculardynamics simulation. Drug Metab Dispos, 2005, 33: 910-919910??
[42]  32 Scott E E, White M A, He Y A, et al. Structure of mammalian cytochrome P4502B4 complexed with 4-(4-chlorophenyl) imidazole at1.9-angstrom resolution —— into the range of P450 conformations and the coordination of redox partner binding. J Biol Chem, 2004, 279:27294-2730127294
[43]  33 Rowland P, Blaney F E, Smyth M G, et al. Crystal structure of human cytochrome P450 2D6. J Biol Chem, 2006, 281: 7614-76227614??
[44]  34 Fishelovitch D, Shaik S, Wolfson H J, et al. Theoretical characterization of substrate access/exit channels in the human cytochrome P4503A4 enzyme: Involvement of phenylalanine residues in the gating mechanism. J Phys Chem B, 2009, 113: 13018-1302513018??
[45]  37 Dieter H H, Muller-Eberhard U, Johnson E F. Identification of rabbit microsomal cytochrome P-450 isozyme, form 1, as a hepaticprogesterone 21-hydroxylase. Biochem Biophys Res Commun, 1982, 105: 515-520515??
[46]  41 Scott E E, He Y A, Wester M R, et al. An open conformation of mammalian cytochrome P4502B4 at 1.6-angstrom resolution. Proc NatlAcad Sci USA, 2003, 100: 13196-1320113196
[47]  47 Jarzynski C. Nonequilibrium equality for free energy differences. Phys Rev Lett, 1997, 78: 2690.2693??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133