全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

模板法制备CdS/TiO2纳米管复合阵列薄膜及其光电性质

DOI: 10.1360/972010-1119, PP. 231-238

Keywords: TiO2/CdS,纳米管阵,列薄膜,模板法,表面光电压谱(SPS),光电特性,电荷转移

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用ZnO纳米棒阵列为模板在氧化铟锡(ITO)导电玻璃衬底上制备了CdS/TiO2纳米管复合薄膜.利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、紫外-可见吸收分光光度计(UV-Vis)及表面光电压谱(SPS)研究了不同CdS沉积时间对复合薄膜的形貌、晶体结构、光电性质的影响.研究结果表明,TiO2纳米管阵列表面沉积5minCdS纳米颗粒后,其表面光电压信号得到增强,并且其吸收光谱可拓展到可见光区;与吸收光谱相对应,在可见光区出现新的光电压谱响应区,这一现象说明与CdS复合可显著提高TiO2纳米管阵列的光电特性;随着CdS纳米颗粒沉积时间的增加,复合纳米管阵列薄膜在可见光区域的光电压强度逐渐减弱,我们用不同的电荷转移机制对此现象进行了详细的讨论和解释.除此之外,我们对TiO2纳米管阵列结构的比表面积对复合结构的光电特性影响也做了深入的讨论.

References

[1]  2 Gratzel M. Photoelectrochemical cells. Nature, 2001, 414: 338-344338??
[2]  4 Chi Y J, Fu H G, Qi L H, et al. Preparation and photoelectric performance of ITO/TiO2/CdS composite thin films. J Photochem PhotobiolA: Chem, 2008, 195: 357-363357??
[3]  10 Tsai C C, Nian J N, Teng H. Mesoporous nanotube aggregates obtained from hydrothermally treating TiO2 with NaOH. Appl Surf Sci,2006, 253: 1898-19021898??
[4]  11 Paulose M, Shankar K, Varghese O K, et al. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes.Nanotechnology, 2006, 17: 1446-14481446??
[5]  19 Greene L E, Law M, Tan D H, et al. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett, 2005, 5:1231-12361231??
[6]  22 Masuda Y, Kato K. Anatase TiO2 films crystallized on SnO2:F substrates in an aqueous solution. Thin Solid Films, 2008, 516: 2547-25522547??
[7]  23 刘琪, 冒国兵, 敖建平. 化学水浴沉积时间对CdS 薄膜性质的影响. 功能材料, 2007, 38: 968-971968
[8]  24 许迪, 高爱梅, 邓文礼. 簇形和花形CdS 纳米结构的自组装及光催化性能. 物理化学学报, 2008, 24: 1219-12241219
[9]  25 Song X M, Wu J M, Yan M. Distinct visible-light response of composite films with CdS electrodeposited on TiO2 nanorod and nanotubearrays. Electrochem Commun, 2009, 11: 2203-22062203??
[10]  26 Chang C H, Lee Y L. Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantumdot-sensitized solar cells. Appl Phys Lett, 2007, 91: 053503??
[11]  27 Cheng K, He Y P, Miao Y M, et al. Quantum size effect on surface photovoltage spectra: Alpha-Fe2O3 nanocrystals on the surface ofmonodispersed silica microsphere. J Phys Chem B, 2006, 110: 7259-72647259??
[12]  1 Gratzel M, O'Regan B. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737-740737??
[13]  3 Durr M, Bamedi A, Yasuda A, et al. Tandem dye-sensitized solar cell for improved power conversion efficiencies. Appl Phys Lett, 2001,84: 3397-33993397
[14]  5 Mane R S, Roh S J, Joo O S, et al. Improved performance of dense TiO2/CdSe coupled thin films by low temperature process. ElectrochimActa, 2005, 50: 2453-24592453
[15]  6 Duzhko V, Timoshenko V Y, Koch F, et al. Photovoltage in nanocrystalline porous TiO2. Phys Rev B, 2001, 64: 075204??
[16]  7 Pang S, Xie T F, Zhang Y, et al. Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitizedsolar cells. J Phys Chem C, 2007, 111: 18417-1842218417??
[17]  8 Lee W, Kang S H, Min S K, et al. Co-sensitization of vertically aligned TiO2 nanotubes with two different sizes of CdSe quantum dots forbroad spectrum. Electrochem Commun, 2008, 10: 1579-15821579??
[18]  9 Zhang Y, Xie T F, Jiang T F, et al. Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous filmand its application for photovoltaic devices. Nanotechnology, 2009, 20: 155707??
[19]  12 Lee S, Jeon C, Park Y. Fabrication of TiO2 tubules by template synthesis and hydrolysis with water vapor. Chem Mater, 2004, 16:4292-42954292??
[20]  13 Liu B, Aydil E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solarcells. J Am Chem Soc, 2009, 131: 3985-39903985??
[21]  14 Varghese O K, Paulose M, Grimes C A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solarcells. Nat Nanotech, 2009, 4: 592-597592??
[22]  15 Qiu J J, Yu W D, Gao X D, et al. Sol-gel assisted ZnO nanorod array template to synthesize TiO2 nanotube arrays. Nanotechnology, 2006,17: 4695-46984695??
[23]  16 Kang Q, Lu Q Z, Liu S H, et al. A ternary hybrid CdS/Pt-TiO2 nanotube structure for photoelectrocatalytic bactericidal effects on EscherichiaColi. Biomaterials, 2007, 31: 3317-33263317??
[24]  17 Gopal K M, Oomman K V, Maggie P, et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, materialproperties, and solar energy applications. Sol Energ Mat Sol C, 2006, 90: 2011-20752011??
[25]  18 Fu D W, Cheng K, Du Z L, et al. Solution based synthesis of ZnO/CdS composite nanorod array film and its photoelectric properties. ActaPhys Chim Sin, 2010, 26: 2575-25802575
[26]  20 Yu H, Zhang S Q, Zhao H J, et al. High-performance TiO2 photoanode with an efficient electron transport network for dye-sensitized solarcells. J Phys Chem C, 2009, 113: 16277-1628216277??
[27]  21 Gao H M, Fang G J, Wang M J, et al. The effect of growth conditions on the properties of ZnO nanorod dye-sensitized solar cells. MaterRes Bull, 2008, 43: 3345-33513345??
[28]  28 Ji Y L, Cheng K, Zhang H M, et al. Solvothermal synthesis of CdS nanorods and photovoltaic characteristics of CdS/PVK composite system.Chinese Sci Bull, 2008, 53: 46-5246??
[29]  29 Belaidi A, Dittrich T, Kieven D, et al. ZnO-nanorod arrays for solar cells with extremely thin sulfidic absorber. Solar Energy Mater SolarCells, 2009, 93: 1033.1036??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133