全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

声悬浮和强激光耦合作用下三元Al-Cu-Si合金的快速凝固

, PP. 293-298

Keywords: 声悬浮,激光辐照,快速凝固,三元共晶,表面形核

Full-Text   Cite this paper   Add to My Lib

Abstract:

在声悬浮和强激光加热相结合的条件下,实现了三元Al-27%Cu-5.3%Si合金的无容器快速凝固,最大过冷度达到195K(0.24TL),冷却速率为76K/s.金相分析表明,凝固组织由(Al+θ+Si)三元共晶和(Al+θ)二相共晶组成.在声悬浮条件下,(Al+θ+Si)三元共晶显著细化,(Al+θ)二相共晶的组织形态丰富.在试样表层区域,表面振荡促进3个共晶相的大量形核,声流有效提高了凝固过程的冷却速率,三元共晶的晶粒尺寸显著减小.随着合金试样温度的升高,悬浮间距和谐振间距均不断增大,且悬浮间距总是大于谐振间距.在声辐射压的作用下,试样变形为中心内凹的饼状,变形程度随声压的提高而不断增大,最大半径比为6.64,对应最大悬浮声压为1.8×104Pa.

References

[1]  Catherall A T, Eaves L, King P J, et al. Magnetic levitation: Floating gold in cryogenic oxygen. Nature, 2003, 422: 579 [2] Tuckermann R, Neidhart B, Lierke E G, et al. Trapping of heavy gases in stationary ultrasonic fields. Chem Phys Lett, 2002, 363: 349.354 [3] 洪振宇, 吕勇军, 解文军, 等. 声悬浮条件下Bi-Ga 过偏晶合金的液相分离[J].科学通报.2006, 51:2714-??浏览 [4] Lü Y J, Xie W J, Wei B. Observation of ice nucleation in acoustically levitated water drops. Appl Phys Lett, 2005, 87: 184107 [5] Ohsaka K, Trinh E H, Glicksman M E. Undercooling of acoustically levitated molten drops. J Cryst Growth, 1990, 106: 191.196 [6] Tian Y, Holt R G, Apfel R E. A new method for measuring liquid surface tension with acoustic levitation. Rev Sci Instrum, 1995, 66:3349.3354 [7] Bauerecker S, Neidhart B. Formation and growth of ice particles in stationary ultrasonic fields. J Chem Phys, 1998, 109: 3709.3712 [8] Santesson S, Nilsson S. Airborne chemistry: Acoustic levitation in chemical analysis. Anal Bioanal Chem, 2004, 378: 1704.1709 [9] Wulsten E, Lee G. Surface temperature of acoustically levitated water microdroplets measured using infrared thermography. Chem EngSci, 2008, 63: 5420.5424 [10] 阮莹, 魏炳波. 三元Al-Cu-Si 共晶合金的深过冷与快速凝固[J].科学通报.2008, 53:2716-??浏览 [11] Richard Weber J K, Felten J J, Nordine Paul C. Laser hearth melt processing of ceramic materials. Rev Sci Instrum, 1996, 67: 522.524 [12] Hong Z Y, Xie W J, Wei B. Vibration characteristics of acoustically levitated object with rigid and elastic reflectors. Chin Phys Lett,2010, 27: 014301 [13] Leung E W, Wang T G. Force on a heated sphere in a horizontal plane acoustic standing wave field. J Acoust Soc Am, 1985, 77:1686.1691 [14] Xie W J, Wei B. Temperature dependence of single-axis acoustic levitation. J Appl Phys, 2003, 93: 3016.3021 [15] Xie W J, Wei B. Dynamics of acoustically levitated disk samples. Phys Rev E, 2004, 70: 046611 [16] King L V. On the acoustic radiation pressure on spheres. Proc Roy Soc, 1934, A147: 212.240 [17] Lee C P, Anilkumar A V, Wang T G. Static shape and instability of an acoustically levitated liquid drop. Phys Fluids A, 1991, 3: 2497.2516 [18] Marston P L. Shape oscillation and static deformation of drops and bubbles driven by modulated radiation stresses.Theory. J Acoust SocAm, 1980, 67: 15.26 [19] Zhao H, Sadhal S S, Trinh E H. Internal circulation in a drop in an acoustic field. J Acoust Soc Am, 1999, 106: 3289.3295 [20] Fand R M. Mechanism of interaction between vibrations and heat transfer. J Acoust Soc Am, 1962, 34: 1887.1894
[2]  洪振宇, 吕勇军, 解文军, 等. 声悬浮条件下Bi-Ga 过偏晶合金的液相分离[J].科学通报.2006, 51:2714-??浏览
[3]  Lü Y J, Xie W J, Wei B. Observation of ice nucleation in acoustically levitated water drops. Appl Phys Lett, 2005, 87: 184107
[4]  Ohsaka K, Trinh E H, Glicksman M E. Undercooling of acoustically levitated molten drops. J Cryst Growth, 1990, 106: 191.196
[5]  Tian Y, Holt R G, Apfel R E. A new method for measuring liquid surface tension with acoustic levitation. Rev Sci Instrum, 1995, 66:3349.3354
[6]  Wulsten E, Lee G. Surface temperature of acoustically levitated water microdroplets measured using infrared thermography. Chem EngSci, 2008, 63: 5420.5424
[7]  阮莹, 魏炳波. 三元Al-Cu-Si 共晶合金的深过冷与快速凝固[J].科学通报.2008, 53:2716-??浏览
[8]  Richard Weber J K, Felten J J, Nordine Paul C. Laser hearth melt processing of ceramic materials. Rev Sci Instrum, 1996, 67: 522.524
[9]  Hong Z Y, Xie W J, Wei B. Vibration characteristics of acoustically levitated object with rigid and elastic reflectors. Chin Phys Lett,2010, 27: 014301
[10]  Leung E W, Wang T G. Force on a heated sphere in a horizontal plane acoustic standing wave field. J Acoust Soc Am, 1985, 77:1686.1691
[11]  Xie W J, Wei B. Temperature dependence of single-axis acoustic levitation. J Appl Phys, 2003, 93: 3016.3021
[12]  Xie W J, Wei B. Dynamics of acoustically levitated disk samples. Phys Rev E, 2004, 70: 046611
[13]  King L V. On the acoustic radiation pressure on spheres. Proc Roy Soc, 1934, A147: 212.240
[14]  Lee C P, Anilkumar A V, Wang T G. Static shape and instability of an acoustically levitated liquid drop. Phys Fluids A, 1991, 3: 2497.2516
[15]  Catherall A T, Eaves L, King P J, et al. Magnetic levitation: Floating gold in cryogenic oxygen. Nature, 2003, 422: 579
[16]  Tuckermann R, Neidhart B, Lierke E G, et al. Trapping of heavy gases in stationary ultrasonic fields. Chem Phys Lett, 2002, 363: 349.354
[17]  Bauerecker S, Neidhart B. Formation and growth of ice particles in stationary ultrasonic fields. J Chem Phys, 1998, 109: 3709.3712
[18]  Santesson S, Nilsson S. Airborne chemistry: Acoustic levitation in chemical analysis. Anal Bioanal Chem, 2004, 378: 1704.1709
[19]  Marston P L. Shape oscillation and static deformation of drops and bubbles driven by modulated radiation stresses.Theory. J Acoust SocAm, 1980, 67: 15.26
[20]  Zhao H, Sadhal S S, Trinh E H. Internal circulation in a drop in an acoustic field. J Acoust Soc Am, 1999, 106: 3289.3295
[21]  Fand R M. Mechanism of interaction between vibrations and heat transfer. J Acoust Soc Am, 1962, 34: 1887.1894

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133