全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

基于极性晶格振动的本征型超常电磁介质

, PP. 504-510

Keywords: 超常电磁介质,极性晶格振动,本征特性,红外,强各向异性介质

Full-Text   Cite this paper   Add to My Lib

Abstract:

具有反常电磁参数的新型介质材料由于其新颖的物理性质和广阔的应用前景引起了越来越多的关注,其使用频率范围也逐渐由微波段向可见光频段发展.目前,典型的超常介质材料主要由人工设计的金属周期结构来实现,但是到红外以上的光频段,这类人工结构面临着加工技术、物理学和材料学极限等方面制约.因此,摆脱人工结构而探索材料本征特性与电磁波的相互作用行为,寻找来自材料本身的超常电磁特性,将成为高频超常电磁介质和器件的重要发展方向之一.在红外波段本征超常电磁介质的研究方面,利用极性晶格振动和电磁波相互作用机制实现超常介电常数是一个新的研究方向.本文较详细地介绍了该机制原理及其在实现超常电磁介质方面的应用和取得的主要研究成果.

References

[1]  Wheeler, M S, Aitchison J S, Mojahedi M. Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies. PhysRev B, 2006, 73: 045105
[2]  Schuller J A, Zia R, Taubner T, et al. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. PhysRev Lett, 2007, 99: 107401
[3]  Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett,2000, 84: 4184-4187
[4]  Huangfu J, Ran L, Chen H, et al. Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallicpatterns. Appl Phys Lett, 2004, 84: 1537-1539
[5]  Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index. Science, 2004, 305: 788-792
[6]  Economou E N, Koschny T, Soukoulis C M. Strong diamagnetic response in split-ring-resonator metamaterials: Numerical study andtwo-loop model. Phys Rev B, 2008, 77: 092401
[7]  Vier D C, Schultz S, Greegor R B, et al. Three-dimensional double-negative metamaterials resonating at 13[J].5 GHz. IET Microw AntennasPropag.2009, 3:723-727
[8]  Wang R, Zhou J, Sun C Q, et al. Left-handed materials based on crystal lattice vibration. Prog Electromagn Res Lett, 2009, 10: 144-155
[9]  Lindell I V, Tretyakov S A, Nikoskinen K I, et al. BW media-media with negative parameters, capable of supporting backward waves.Micro Opt Tech Lett, 2001, 31: 129-133
[10]  Yao J, Liu Z, Liu Y, et al. Optical negative refraction in bulk metamaterials of nanowires. Science, 2008, 321: 930
[11]  Yao Y, Huang J P, Liu Y M, et al. Optical negative refraction in ferrofluids with magnetocontrollability. Phys Rev Lett, 2010, 104: 034501
[12]  Zhang Y, Fluegel B, Mascarenhas A. Total negative refraction in real crystals for ballistic electrons and light. Phys Rev Lett, 2003, 91: 157404
[13]  Wang R, Sun J B, Zhou J. Indefinite permittivity in uniaxial single crystal at infrared frequency. Appl Phys Lett, 2010, 97: 031912
[14]  Palik E D. Handbook of Optical Constant of Solid II. New York: Academic Press, 1985
[15]  Veselago V G. The electrodynamics of substance simultaneously negative values of ? and ?. Sov Phys Usp, 1968, 10: 509-514
[16]  Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett, 1996, 76: 4773-4776
[17]  Pendry J B. Negative refraction makes a perfect lens. Phys Rev Lett, 2000, 85: 3966-3969
[18]  Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292: 77-79
[19]  Kolinko P, Smith D R. Numerical study of electromagnetic waves interacting with negative index materials. Opt Express, 2003, 11: 640-648
[20]  Fang N, Zhang X. Imaging properties of a metamaterial superlens. Appl Phys Lett, 2003, 82: 161-163
[21]  Shalaev V M, Cai W, Chettiar U K, et al. Negative index of refraction in optical metamaterials. Opt Lett, 2005, 30: 3356-3358
[22]  Smith D R, Gollub J, Mock J J, et al. Calculation and measurement of bianisotropy in a split ring resonator metamaterial. J Appl Phys,2006, 100: 024507
[23]  Yuan H K, Chettiar U K, Cai W, et al. A negative permeability material at red light. Opt Express, 2007, 15: 1076-1083
[24]  Zhao Q, Lei K, Zhao H, et al. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite.Phys Rev Lett, 2008, 101: 027402
[25]  Banzer P, Peschel U, Quabis S, et al. On the experimental investigation of the electric and magnetic response of a single nano-structure.Opt Express, 2010, 18: 10905-10923
[26]  Wang J F, Qu S B, Xu Z, et al. Normal-incidence left-handed metamaterials based on symmetrically connected split-ring resonators. PhysRev E, 2010, 81: 036601
[27]  Breakthrough of the 2003—The runners-up.[J]. Science.2003,302:2039-
[28]  Breakthrough of the 2006.[J]. Science.2006,314:1841-
[29]  The top ten advances in materials science. Mater Today, 2008, 11: 40-45
[30]  Ueda T, Tsutsumi M. Left-handed transmission characteristics of rectangular waveguides periodically loaded with ferrite. IEEE TransMagn, 2005, 41: 3532-3537
[31]  Rachford F J, Armstead D N, Harris V G, et al. Simulations of ferrite-dielectric-wire composite negative index materials. Phys Rev Lett,2007, 99: 057202
[32]  Zhao H, Zhou J, Zhao Q, et al. Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires. Appl PhysLett, 2007, 91: 131107
[33]  Bai Y, Chen H S, Zhang J J, et al. Left-handed material based on ferroelectric medium. Opt Express, 2007, 15: 8284-8289
[34]  Zhao H, Kang L, Zhou J, et al. Experimental demonstration of tunable negative phase velocity and negative refraction in a ferromagnetic/ferroelectric composite metamaterial. Appl Phys Lett, 2008, 93: 201106
[35]  马科斯·玻恩, 黄昆. 葛惟锟, 贾惟义, 译. 晶格动力学理论. 北京: 北京大学出版社, 2006
[36]  张光寅, 蓝国祥. 晶格振动光谱学. 北京: 高等教育出版社, 1992
[37]  Wang R, Zhou J, Li B, et al. Intrinsic negative permittivity at far infrared region based on crystal lattice vibration. IEEE Photonics GlobalConference, 2010, in press
[38]  马科斯·玻恩, 埃米尔·沃尔夫. 杨葭荪, 译. 光学原理: 光的传播、干涉和衍射的电磁理论. 北京: 电子工业出版社, 2006
[39]  Lewin L. The electrical constants of a material loaded with spherical particles. Proc Inst Electr Eng, 1947, 94: 65-68
[40]  Wheeler M S, Aitchison J S, Mojahedi M. Three-dimensional array of dielectric spheres with an isotropic negative permeability at infraredfrequencies. Phys Rev B, 2005, 72: 193103

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133