全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

电离层与太阳活动性关系

, PP. 477-487

Keywords: 电离层,太阳活动性,太阳EUV,辐射,太阳活动指数,电离层指数

Full-Text   Cite this paper   Add to My Lib

Abstract:

秉含着不同时间尺度的太阳电磁辐射变化无疑会调制电离层.作为电离层物理的核心问题之一,电离层对太阳活动性的依存关系是认知电离层结构与演变的基础.本文简要地综述最近一些年在电离层的太阳活动性依赖特性方面取得的进展,涉及的内容包括(1)在太阳辐射的观测与太阳活动指数方面,以电离层研究的视角评述了太阳活动指数存在的问题,统计证实了太阳活动指数与EUV辐射通量间的非线性关系,以及改进太阳活动指数的一些努力;(2)阐述了在不同高度电离层的太阳活动性依赖性的工作进展,特别是最近的统计研究发现,随着太阳EUV辐射通量变化,电离层电子密度变化趋势与所在纬度、季节、地方时和高度有关,可区分为准线性、放大和饱和3种类型,取决于不同的主控物理过程;(3)太阳活动历史序列和23/24太阳活动周极低展示出太阳活动性存在极端现象,讨论了太阳辐射极端条件下的电离层状态;(4)在电离层的耀斑响应方面,对全球观测数据的分析研究揭示出耀斑期间电离层响应与一些太阳参数的统计关系,特别是修正了以往关于电离层响应与天顶角无关的错误论断.利用电离层模式成功模拟了耀斑期间电离层响应的季节、地方时变化和高度差异等的观测特征.以上相关工作有助于理解电离层的基本过程,并为电离层建模、预报和相关工程应用提供指导.

References

[1]  Pap J, Bouwer S D, Tobiska W K. Periodicities of solar irradiance and solar activity indices. Solar Phys, 1990, 129: 165-189
[2]  Lundstedt H, Liszka L, Lundin R. Solar activity explored with new wavelet methods. Ann Geophys, 2005, 23: 1505-1511
[3]  Moussa X, Polygiannakis J M, Preka-Papadema P, et al. Solar cycles: A tutorial. Adv Space Res, 2005, 35: 725-738
[4]  Lean J. Solar ultraviolet irradiance variations: A review. J Geophys Res, 1987, 92: 839-868
[5]  Gorney D J. Solar cycle effects on the near-earth space environment. Rev Geophys, 1990, 28: 315-336
[6]  Kane R P. Sunspots, solar radio noise, solar EUV and ionospheric foF2. J Atmos Terr Phys, 1992, 54: 463-466
[7]  Lei J, Liu L, Wan W, Zhang S R. Variations of electron density based on long-term incoherent scatter radar and ionosonde measurementsover Millstone Hill. Radio Sci, 2005, 40: RS2008, doi: 10.1029/2004RS003106
[8]  Mikhailov A V, Mikhailov V V. Solar cycle variations of annual mean noon foF2. Adv Space Res, 1995, 15: 79-82
[9]  Xu T, Wu Z S, Wu J, et al. Solar cycle variation of the monthly median foF2 at Chongqing station, China. Adv Space Res, 2008, 42:213-218
[10]  Richards P G. Seasonal and solar cycle variations of the ionospheric peak electron density: Comparison of measurement and models. JGeophys Res, 2001, 106: 12803-12819
[11]  Sethi N K, Goel M K, Mahajan K K. Solar cycle variations of foF2 from IGY to 1990. Ann Geophys, 2002, 20: 1677-1685
[12]  Bhonsle R V, Da Rosa A V, Garriott O K. Measurements of the total electron content and equivalent slab thickness of the mid-latitudeionosphere. Radio Sci, 1965, 69: 929-939
[13]  Chakraborty S K, Hajra R. Solar control of ambient ionization of the ionosphere near the crest of the equatorial anomaly in the Indianzone. Ann Geophys, 2008, 26: 47-57
[14]  Huang Y N. Solar cycle variation in the total electron content at Sagamore Hill. J Atoms Terr Phys, 1978, 40: 733-739
[15]  Liu L, Chen Y. Statistical analysis on the solar activity variations of the TEC derived at JPL from global GPS observations. J GeophysRes, 2009, 114: A10311, doi: 10.1029/2009JA014533
[16]  Titheridge J E. The electron content of the southern mid-latitude ionosphere, 1965-1971. J Atmos Terr Phys, 1973, 35: 981-1001
[17]  Yeh K C, Flaherty B J. Ionospheric electron content at temperate latitudes during the declining phase of the sunspot cycle. J Geophys Res,1966, 71: 4557-4570
[18]  Liu L, Le H, Wan W, et al. An analysis of the scale heights in the lower topside ionosphere based on the Arecibo incoherent scatter radarmeasurements. J Geophys Res, 2007, 112: A06307, doi:10.1029/2007JA012250
[19]  Liu L, Luan X, Wan W, et al. Solar activity variations of equivalent winds derived from global ionosonde data. J Geophys Res, 2004, 109:A12305, doi: 10.1029/2004JA010574
[20]  Liu L, Wan W, Luan X, et al. Solar activity dependence of effective winds derived from ionospheric data at Wuhan. Adv Space Res, 2003,32: 1719-1924
[21]  Igi S, Oliver W L, Ogawa T. Solar cycle variations of the thermospheric meridional wind over Japan derived from measurements of hmF2.J Geophys Res, 1999, 104: 22427-22431
[22]  Hedin A E, Buonsanto M J, Codrescu M, et al. Solar activity variations in midlatitude thermospheric meridional winds. J Gephys Res,1994, 99: 17601-17608
[23]  Guo J, Wan W, Forbes J M, et al. Effects of solar variability on thermosphere density from CHAMP accelerometer data. J Geophys Res,2007, 112: A10308, doi: 10.1029/2007JA012409
[24]  Liu H, Lühr H, Watanabe S. Climatology of the equatorial thermospheric mass density anomaly. J Geophys Res, 2007, 112: A05305, doi:10.1029/2006JA012199
[25]  Balan N, Bailey G J, Jenkins B, et al. Variations of ionospheric ionization and related solar fluxes during an intense solar cycle. J GeophysRes, 1994, 99: 2243-2253
[26]  Balan N, Bailey G J, Su Y Z. Variations of the ionosphere and related solar fluxes during solar cycles 21 and 22. Adv Space Res, 1996, 18:11-14
[27]  Balan N, Bailey G J, Moffett R J. Modeling studies of ionospheric variations during an intense solar cycle. J Geophys Res, 1994, 99:17467-17475
[28]  Ma R, Xu J, Wang W, et al. Seasonal and latitudinal differences of the saturation effect between ionospheric NmF2 and solar activity indices.J Geophys Res, 2009, 114: A10303, doi: 10.1029/2009JA014353
[29]  Ortiz de Adler N, Manzano J R. Solar cycle hysteresis on F-region electron concentration peak heights over Tucuman. Adv Space Res,1995, 15: 83-88
[30]  Trísková L, Chum J. Hysteresis in dependence of foF2 on solar indices. Adv Space Res, 1996, 18: 145-148
[31]  Kouris S S, Bradley P A, Dominici P. Solar-cycle variation of the daily foF2 and M(3000)F2. Ann Geophys, 1998, 16: 1039-1042
[32]  Hedin A E. Correlations between thermospheric density and temperature, solar EUV flux, and 10.7-cm flux variations. J Geophys Res,1984, 89: 9828-9834
[33]  Liu H, Stolle C, F?rster M, et al. Solar activity dependence of the electron density in the equatorial anomaly regions observed by CHAMP.J Geophys Res, 2007, 112: A11311, doi: 10.1029/2007JA012616
[34]  Chen Y, Liu L, Wan W, et al. Solar activity dependence of the topside ionosphere in low latitudes. J Geophys Res, 2009, 114: A08306,doi: 10.1029/2008JA013957
[35]  Liu L, Wan W, Ning B. A study of the ionogram derived effective scale height around the ionospheric hmF2. Ann Geophys, 2006, 24:851-860
[36]  Fejer B G, Farley D T, Woodman R F, et al. Dependence of equatorial F-region vertical drifts on season and solar cycle. J Geophys Res,1979, 84: 5792-5796
[37]  González S A, Sulzer M P, Nicolls M J, et al. Solar cycle variability of nighttime topside helium ion concentrations over Arecibo. J GeophysRes, 2004, 109: A07302, doi: 10.1029/2003JA010100
[38]  Truhlík V, T?ísková L, ?milauer J. Manifestation of solar activity in the global topside ion composition- a study based on satellite data.Ann Geophys, 2005, 23: 2511-2517
[39]  West K H, Heelis R A, Rich F J. Solar activity variations in the composition of the low-latitude topside ionosphere. J Geophys Res, 1997,102: 295-305
[40]  Kutiev I S, Marinov P G, Watanabe S. Model of topside ionosphere scale height based on topside sounder data. Adv Space Res, 2006, 37:943-950
[41]  Zhao B, Wan W, Liu L, et al. Statistical characteristics of the total ion density in the topside ionosphere during the period 1996-2004 usingempirical orthogonal function (EOF) analysis. Ann Geophys, 2005, 23: 3615-3631
[42]  Liu L, Wan W, Yue X, et al. The dependence of plasma density in the topside ionosphere on solar activity level. Ann Geophys, 2007, 25:1337-1343
[43]  Liu L, Zhao B, Wan W, et al. Yearly variations of global plasma densities in the topside ionosphere at middle and low latitudes. J GeophysRes, 2007, 112: A07303, doi: 10.1029/2007JA012283
[44]  Su Y Z, Bailey G J, Fukao S. Altitude dependencies in the solar activity variations of the ionospheric electron density. J Geophys Res,1999, 104: 14879-14891
[45]  Rich F J, Sultan P J, Burke W J. The 27-day variations of plasma densities and temperatures in the topside ionosphere. J Geophys Res,2003, 108: 1297, doi: 10.1029/2002JA009731
[46]  Eddy J A. The Maunder minimum. Science, 1976, 192: 1189-1202
[47]  Smithtro C G, Sojka J J. Behavior of the ionosphere and thermosphere subject to extreme solar cycle conditions. J Geophys Res, 2005,110: A08306, doi: 10.1029/2004JA010782
[48]  Dmitriev A V, Yeh H C, Chao J K, et al. Top-side ionosphere response to extreme solar events. Ann Geophys, 2006, 24: 1469-1477
[49]  Tsurutani B T, Gonzalez W D, Lakhina G S, et al. The extreme magnetic storm of 1-2 September 1859. J Geophys Res, 2003, 108: 1268,doi: 10.1029/JA009504
[50]  Tsurutani B T, Judge D L, Guarnieri F L, et al. The October 28, 2003 extreme EUV solar flare and resultant extreme ionospheric effects:Comparison to other Halloween events and the Bastille Day event. Geophys Res Lett, 2005, 32: L03S09, doi: 10.1029/2004GL021475
[51]  Davies K. Ionospheric Radio. Exeter: Short Run Press Ltd., 1990
[52]  Mendillo M, Klobuchar J A, Fritz R B, et al. Behavior of the ionospheric F region during the greatest solar flare of August 7, 1972. JGeophys Res, 1974, 79: 665
[53]  Wan W, Liu L, Yuan H, et al. The GPS measured SITEC caused by the very intense solar flare on July 14, 2000. Adv Space Res, 2005, 36:2465-2469
[54]  Afraimovich E L. GPS global detection of the ionospheric response to solar flares. Radio Sci, 2000, 35: 1417-424
[55]  Liu H, Lühr H, Watanabe S, et al. Contrasting behavior of the thermosphere and ionosphere in response to the 28 October 2003 solar flare.J Geophys Res, 2007, 112: A07305, doi: 10.1029/2007JA012313
[56]  陈斌, 刘立波, 万卫星, 等. 1996~2003 年大耀斑事件引起的TEC 突然增强的统计分析. 空间科学学报, 2005, 25: 6-16
[57]  Liu J Y, Lin C H, Tsai H F, et al. Ionospheric solar flare effects monitored by the ground-based GPS receivers: Theory and observation. JGeophys Res, 2004, 109: A01307, doi: 10.1029/2003JA009931
[58]  Zhang D H, Xiao Z. Study of the ionospheric TEC using GPS during the large solar flare burst on Nov. 6, 1997. Chinese Sci Bull, 2000,45: 1749-1752
[59]  张东和, 肖佐. 常青耀斑的日面位置与电离层SITEC 的关系. 科学通报, 2000, 46: 1339-1341
[60]  张东和, 肖佐. 太阳耀斑期间向日面电离层相关扰动现象与分析[J].科学通报.2002, 47:96-98??浏览
[61]  Zhang D H, Xiao Z, Igarashi K, et al. GPS-derived ionospheric total electron content response to a solar flare that occurred on 14 July2000. Radio Sci, 2002, 37: 1086, doi: 10.1029/2001RS002542
[62]  Zhang D H, Xiao Z. Study of the ionospheric total electron content response to the great flare on 15 April 2001 using the InternationalGPS Service network for the whole sunlit hemisphere. J Geophys Res, 2003, 108: 1330-1340
[63]  Zhang D H, Xiao Z. Study of ionospheric response to the 4B flare on 28 October 2003 using International GPS Service network data. JGeophys Res, 2005, 110: A03307, doi: 10.1029/2004JA010738
[64]  Le H, Liu L, Chen B, et al. Modeling the responses of the middle latitude ionosphere to solar flares. J Atmos Solar-Terr Phys, 2007, 69:1587-1598
[65]  Huba J D, Warren H P, Joyce G, et al. Global response of the low-latitude to midlatitude ionosphere due to the Bastille Day flare. GeophysRes Lett, 2005, 32: L15103, doi: 10.1029/2005GL023291
[66]  Meier R R, Warren H P, Nicholas A C, et al. Ionospheric and dayglow responses to the radiative phase of the Bastille Day flare. GeophysRes Lett, 2002, 29, 1461, doi:10.1029/2001GL013956
[67]  0 Sutton E K, Forbes J M, Nerem R S, et al. Neutral density response to the solar flares of October and November, 2003. Geophys Res Lett,2006, 33: L22101, doi: 10.1029/2006GL027737
[68]  1 Jackman C H, DeLand M T, Labow G J, et al. Influence of several very large solar proton events in years 2000-2003 on the neutral middleatmosphere. Adv Space Res, 2005, 35: 445-450
[69]  2 Shea M A, Smart D F. A summary of major solar proton events. Solar Phys, 1990, 127: 297-320
[70]  3 Osepian A, Kirkwood S, Dalin P. The influence of ozone concentration on the lower ionosphere-modelling and measurements during the29-30 October 2003 solar proton event. Ann Geophys, 2009, 27: 577-589
[71]  4 de Adler N O, Elías A G, Manzano J R. Solar cycle length variation: Its relation with ionospheric parameters. J Atmos Solar-Terr Phys,1997, 59: 159-162
[72]  Lean J L, White O R, Livingston W C, et al. Variability of a composite chromospheric irradiance index during the 11-year activity cycleand over longer time periods. J Geophys Res, 2001, 106: 10645-10658
[73]  Forbes J M, Bruinsma S, Lemoine F G. Solar rotation effects in the thermospheres of Mars and Earth. Science, 2006, 312: 1366-1368
[74]  Hinteregger H E, Bedo D E, Manson J E. The EUV spectrophotometer on Atmosphere Explorer. Radio Sci, 1973, 8: 349-359
[75]  Ogawa H S, Judge D L, McMullin D R, et al. First-year continuous solar EUV irradiance from SOHO by the CELIAS/SEM during 1996solar minimum. J Geophys Res, 1998, 103: 1-6
[76]  Richards P G, Fennelly J A, Torr D G. EUVAC: A solar EUV flux model for aeronomic calculations. J Geophys Res, 1994, 99: 8981-8992
[77]  Richards P G, Woods T N, Peterson W K. HEUVAC: A new high resolution solar EUV proxy model. Adv Space Res, 2006, 37: 315-322
[78]  Floyd L, Newmark J, Cook J, et al. Solar EUV and UV spectral irradiances and solar indices. J Atmos Solar-Terr Phys, 2005, 67: 3-15
[79]  Viereck R A, Puga L, McMullin D, et al. The Mg II index: A proxy for solar EUV. Geophys Res Lett, 2001, 28: 1343-1346
[80]  Kane R P. Solar EUV and ionospheric parameters: A brief assessment. Adv Space Res, 2003, 32: 1713-1718
[81]  Tobiska W K, Woods T, Eparvier F, et al. The SOLAR2000 empirical solar irradiance model and forecast tool. J Atmos. Solar-Terr, 2000,62: 1233-1250
[82]  Bailey S M, Woods T N, Barth C A, et al. Measurements of the solar soft X-ray irradiance by the Student Nitric Oxide Explorer: Firstanalysis and underflight calibrations. J Geophys Res, 2000, 105: 27179-27193
[83]  Lean J L, Warren H P, Mariska J T, et al. A new model of solar EUV irradiance variability 2. Comparsions with empirical models andobservations and implications for space weather. J Geophys Res, 2003, 108: 1059, doi: 10.1029/2001JA009238
[84]  Bilitza D. The Importance of EUV Indices for the International Reference Ionosphere. Phys Chem Earth (C), 2000, 25: 515-521
[85]  Tobiska W K. Validating the Solar EUV Proxy, E10.7. J Geophys Res, 2001, 106: 29969-29978
[86]  Barth C A, Tobiska W K, Rottman G J, et al. Comparison of 10.7 cm radio flux with SME solar Lyman-alpha flux. Geophys Res Lett,1990, 17: 571-574
[87]  Kane R P. Hysteresis and non-linearity between solar EUV and 10.7 cm fluxes. Ind J Radio Space Phys, 2005, 34: 161-170
[88]  Kane R P. Fluctuations in the ~27-day sequences in the solar index F10 during solar cycles 22-23. J Atmos Solar-Terr Phys, 2003, 65:1169-1174
[89]  Liu L, Wan W, Ning B, et al. Solar activity variations of the ionospheric peak electron density. J Geophys Res, 2006, 111: A08304,doi:10.1029/2006JA011598
[90]  Liu R, Smith P, King J. A new solar index to improve foF2 prediction using the CCIR Atlas. Telecomm J, 1983, 50: 408-413
[91]  Ortikov M Yu, Shemelov V A, Shishigin I V, et al. Ionospheric index of solar activity based on the data of measurements of the spacecraftsignals characteristics. J Atmos Solar-Terr Phys, 2003, 65: 425-430
[92]  Mikhailov A, Mikhailov V. A new ionospheric index MF2. Adv Space Res, 1995, 15: 93-97
[93]  Yue X, Wan W, Liu L, et al. An empirical model of ionospheric foE over Wuhan. Earth Planets Space, 2006, 58: 323-330
[94]  Nusinov A A. Ionosphere as a natural detector for investigations of solar EUV flux variations. Adv Space Res, 2006, 37: 426-432
[95]  Afraimovich E L, Astafyeva E I, Oinats A V, et al. Global electron content: A new conception to track solar activity. Ann Geophys, 2008,26: 335-344
[96]  Liu L, Wan W, Ning B, et al. Climatology of the mean TEC derived from GPS Global Ionospheric Maps. J Geophys Res, 2009, 114:A06308, doi:10.1029/2009JA014244
[97]  佘承莉, 万卫星, 徐桂荣. 电离层全球电子总含量的气候学特性分析与经验模式构建[J].科学通报.2007, 52:2876-2881??浏览
[98]  Liu R, Xu Z, Wu J, et al. Preliminary studies on ionospheric forecasting in China and its surrounding area. J Atmos Solar-Terr Phys, 2005,67: 1129-1136
[99]  王家龙. 第24 太阳周将是一个低太阳周[J].科学通报.2009, 54:3664-3668??浏览
[100]  Dikpati M, de Toma G, Gilman P A. Predicting the strength of solar cycle 24 using a flux- transport dynamo-based tool. Geophys ResLett, 2005, 33: L05102, doi:10.1029/2005GL025221
[101]  Liu J Y, Chen Y I, Lin J S. Statistical investigation of the saturation effect in the ionospheric foF2 versus sunspot, solar radio noise, andsolar EUV radiation. J Geophys Res, 2003, 108: 1067, doi: 10.1029/2001JA007543
[102]  Liu L, Wan W, Ning B. Statistical modeling of ionospheric foF2 over Wuhan. Radio Sci, 2004, 39: RS2013, doi: 10.1029/2003RS003005
[103]  Chen Y, Liu L, Le H. Solar activity variations of nighttime ionospheric peak electron density. J Geophys Res, 2008, 113: A11306, doi:10.1029/2008JA013114
[104]  Chen Y I, Liu J Y, Chen S C. Statistical investigation of the saturation effect of sunspot on the ionospheric foF2. Phys Chem Earth (C),2000, 25: 359-362

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133