全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

虚拟通孔对互连温度变化的影响

, PP. 617-622

Keywords: 互连建模,互连平均温升,多通孔效应,虚拟通孔,层间介质

Full-Text   Cite this paper   Add to My Lib

Abstract:

互连温升越高,引起的互连温度效应越明显.通孔具有相对较高的热导率,可以成为有效的热传导途径,极大地降低互连平均温升.针对通孔这一特性引入虚拟通孔,建立考虑多虚拟通孔效应的互连平均温升模型.所提模型将多通孔效应整合到层间介质的有效热导率中得到更为精确的结果.此外根据不同的层间介质材料对多通孔效应进行分析讨论,并对多通孔效应进行扩展应用,得出使互连平均温升最小时的通孔间距与通孔数量.所提模型应用到集成电路设计中可以提高电路设计的精确度,优化电路性能.

References

[1]  Talanov V V, Schwartz A R. Near-field scanning microwave microscope for interline capacitance characterization of nanelectronics interconnect.IEEE Trans Microwave Theory Tech, 2009, 57: 1224-1229
[2]  Zhu Z M, Li R, Hao B T, et al. A novel analytical thermal model for multilevel nano-scale interconnects considering the via effect. ChinPhys B, 2009, 18: 4995-5000
[3]  Wang N L, Zhou R D. A novel analytical thermal model for temperature estimation of multilevel ULSI interconnects. In: Huang R, Yu M,Juin J L, eds. Int Conf on Solid-State and Integrated Circuits Technology, 2004 Oct 18-21, Beijing, China. Beijing: Institute of Electricaland Electronics Engineers Press, 2005. 1088-1091
[4]  Chiang T Y, Banerjee K, Saraswat K C. Compact modeling and spice-based simulation for electrothermal analysis of multilevel ULSI in2011terconnects. In: Hassoun S, Gielen G, Pedram M, eds. Proc Int Conf on Computer-Aided Design, 2001 Nov 4-8, San Jose. New York: Instituteof Electrical and Electronics Engineers Press, 2002. 165-172
[5]  Zhu Z M, Hao B T, Qian L B, et al. A compact interconnect temperature distribution model considering the via effect and the heat fringingeffect (in Chinese). Acta Phys Sin, 2009, 58: 7130-7135
[6]  Ajami A H, Banerjee K, Pedram M. Modeling and analysis of nonuniform substrate temperature effects on global ULSI Interconnects.IEEE Trans Computer-Aided Design Integ Circuits Sys, 2005, 24: 849-861
[7]  Chiang T Y, Shieh B, Saraswat K C. Impact of Joule Heating on Scaling of Deep Sub-Micron Cu/ow-k Interconnects. In: Taur Y,Maeguchi K, eds. IEEE Int Symp VLSI Technology, 2002 June 11-13, Honolulu. Gaithersburg: Widerkehr and Associates Press, 2002.38-39
[8]  Subrina S, Kotchetkov D, Balandin A A. Heat removal in silicon-on-insulator integrated circuits with graphene lateral heat spreaders.IEEE Electron Device Lett, 2009, 30: 1281-1283 [2] Wang Z, Dong G, Yang Y T, et al. Crosstalk noise voltage of coupling RC interconnect with temperature distribution. Chinese J Electron,2010, 19: 43-47 [3] Wang Z, Dong G, Yang Y T, et al. Study on clock skew of unsymmetrical RLC interconnect tree with temperature distribution (in Chinese).Acta Phys Sin, 2010, 59: 5646-5651 [4] Sundaresan K, Mahapatra N R. An analysis of timing violations due to spatially distributed thermal effects in global wires. In: Levitan P S,Fix L, eds. Proceedings of ACM/IEEE DAC, 2007 June 4-8, San Diego. New York: Association for Computing Machinery Press, 2007.515-520 [5] Im S, Banerjee K. Full chip thermal analysis of planar (2-D) and vertically integrated (3-D) high performance ICs. In: Marek J, Illing M,eds. IEEE Int Electron Devices Meeting, 2000 Dec 10-13, San Francisco. Hong Kong: the University of Hong Kong Press, 2001. 727-730 [6] Ni M.[J].Memik S O. Self-heating-aware optimal wire sizing under Elmore delay model. In: Lauwereins R, Madsen J, eds. Design, Automation& Test in Europe Conference & Exhibition.2007,:- ? Datta B, Burleson W P. Low power on-chip thermal sensors based on wires. In: Mooney V, Zhao L, Hasler P, eds. IFIP Int Conf on VeryLarge Scale Integration, 2007 Oct 15-17, Atlanta. New York: Springer-Verlag, 2008. 258-263 [7] Che F X, Zhang X, Zhu W H, et al. Reliability evaluation for copper/low-k structures based on experimental and numerical methods. IEEETrans Device Mater Relia, 2008, 8: 455-463 [8] Talanov V V, Schwartz A R. Near-field scanning microwave microscope for interline capacitance characterization of nanelectronics interconnect.IEEE Trans Microwave Theory Tech, 2009, 57: 1224-1229 [9] Zhu Z M, Li R, Hao B T, et al. A novel analytical thermal model for multilevel nano-scale interconnects considering the via effect. ChinPhys B, 2009, 18: 4995-5000 [10] Wang N L, Zhou R D. A novel analytical thermal model for temperature estimation of multilevel ULSI interconnects. In: Huang R, Yu M,Juin J L, eds. Int Conf on Solid-State and Integrated Circuits Technology, 2004 Oct 18-21, Beijing, China. Beijing: Institute of Electricaland Electronics Engineers Press, 2005. 1088-1091 [11] Chiang T Y, Banerjee K, Saraswat K C. Compact modeling and spice-based simulation for electrothermal analysis of multilevel ULSI in2011terconnects. In: Hassoun S, Gielen G, Pedram M, eds. Proc Int Conf on Computer-Aided Design, 2001 Nov 4-8, San Jose. New York: Instituteof Electrical and Electronics Engineers Press, 2002. 165-172 [12] Zhu Z M, Hao B T, Qian L B, et al. A compact interconnect temperature distribution model considering the via effect and the heat fringingeffect (in Chinese). Acta Phys Sin, 2009, 58: 7130-7135 [13] Ajami A H, Banerjee K, Pedram M. Modeling and analysis of nonuniform substrate temperature effects on global ULSI Interconnects.IEEE Trans Computer-Aided Design Integ Circuits Sys, 2005, 24: 849-861 [14] Chiang T Y, Shieh B, Saraswat K C. Impact of Joule Heating on Scaling of Deep Sub-Micron Cu/ow-k Interconnects. In: Taur Y,Maeguchi K, eds. IEEE Int Symp VLSI Technology, 2002 June 11-13, Honolulu. Gaithersburg: Widerkehr and Associates Press, 2002.38-39 [15] ESIA, JEITA, KSIA, et al. International technology roadmap for semiconductors. Technical Report, ITRS for Semiconductors 2007 edition:Interconnect, the ITRS Organization. 2007
[9]  Subrina S, Kotchetkov D, Balandin A A. Heat removal in silicon-on-insulator integrated circuits with graphene lateral heat spreaders.IEEE Electron Device Lett, 2009, 30: 1281-1283
[10]  Wang Z, Dong G, Yang Y T, et al. Crosstalk noise voltage of coupling RC interconnect with temperature distribution. Chinese J Electron,2010, 19: 43-47
[11]  Wang Z, Dong G, Yang Y T, et al. Study on clock skew of unsymmetrical RLC interconnect tree with temperature distribution (in Chinese).Acta Phys Sin, 2010, 59: 5646-5651
[12]  Sundaresan K, Mahapatra N R. An analysis of timing violations due to spatially distributed thermal effects in global wires. In: Levitan P S,Fix L, eds. Proceedings of ACM/IEEE DAC, 2007 June 4-8, San Diego. New York: Association for Computing Machinery Press, 2007.515-520
[13]  Im S, Banerjee K. Full chip thermal analysis of planar (2-D) and vertically integrated (3-D) high performance ICs. In: Marek J, Illing M,eds. IEEE Int Electron Devices Meeting, 2000 Dec 10-13, San Francisco. Hong Kong: the University of Hong Kong Press, 2001. 727-730
[14]  Ni M.[J].Memik S O. Self-heating-aware optimal wire sizing under Elmore delay model. In: Lauwereins R, Madsen J, eds. Design, Automation& Test in Europe Conference & Exhibition.2007,:-
[15]  ? Datta B, Burleson W P. Low power on-chip thermal sensors based on wires. In: Mooney V, Zhao L, Hasler P, eds. IFIP Int Conf on VeryLarge Scale Integration, 2007 Oct 15-17, Atlanta. New York: Springer-Verlag, 2008. 258-263
[16]  Che F X, Zhang X, Zhu W H, et al. Reliability evaluation for copper/low-k structures based on experimental and numerical methods. IEEETrans Device Mater Relia, 2008, 8: 455-463
[17]  ESIA, JEITA, KSIA, et al. International technology roadmap for semiconductors. Technical Report, ITRS for Semiconductors 2007 edition:Interconnect, the ITRS Organization. 2007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133