全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

砷化镓光导开关的畴电子崩理论分析

DOI: 10.1360/972010-1474, PP. 679-684

Keywords: 光导开关,强电场作用,高载流子密度效应,稳定增长,畴电子崩,流注传播

Full-Text   Cite this paper   Add to My Lib

Abstract:

在分析半绝缘(SI)砷化镓光导开关(PCSS)中丝状电流(流注)形成和传播的实验结果的基础上,提出了高增益砷化镓光导开关中的畴电子崩(EAD)理论.该理论完善了EAD概念,揭示了高增益GaAsPCSS中局域内的强电场作用和高载流子密度效应使非平衡载流子密度稳定增长,从而导致流注形成.应用EAD理论合理地解释了GaAsPCSS中电流丝的形成和传播,解释了在器件两端的偏置电场低于载流子本征碰撞电离的电场阈值条件下器件中存在载流子雪崩生长等实验现象,结果表明在这类具有转移电子效应的半导体器件中,EAD理论是分析流注形成的基本理论.

References

[1]  2 Yang H C, Cui H J, Sun Y Q, et al. High power, longevity gallium arsenide photoconductivesemiconductor switches. Chinese Sci Bull,2010, 55: 1331-1337??
[2]  3 Liu H, Ruan C L. Streamer in high gain GaAs photoconductive semiconductor switches. In: 17th IEEE International Pulsed Power Conference(PPC2009), Washington D C, USA, 2009. 663-668
[3]  5 Schoenbach K H, Kenney J S, Peterkin F E, et al. Temporal development of electric field structures in photoconductive GaAs switches.Appl Phys Lett, 1993, 63: 2100-2102??
[4]  6 Loubriel G M, Zutavern F J, Hjalmarson H P, et al. Measurement of the velocity of current filaments in optically triggered, high gainGaAs switches. Appl Phys Lett, 1994, 64: 3323-3325??
[5]  8 Mazzola M S, Schoenbach K H, Lakdawala V K, et al. Infrared quenching of conductivity at high electric fields in a bulk, copper-compensated,optically activated GaAs switch. IEEE Trans Electron Devices, 1990, 37: 2499-2505??
[6]  9 Capps C D, Falk R A, Adams J C. Time-dependent model of an optically triggered GaAs switch. J Appl Phys, 1993, 74: 6645-6654??
[7]  15 刘鸿, 阮成礼. 高增益砷化镓光导开关中的特征量分析. 中国激光, 2010, 37: 394-397
[8]  16 Barnett A M, Jensen H A. Observation of current filaments in semi-insulating GaAs. Appl Phys Lett, 1968, 12: 341-342??
[9]  17 Lagowski J, Bugajski M, Matsui M, et al. Optical characterization of semi-insulating GaAs: Determination of the Fermi energy, the concentrationof the midgap EL2 level and its occupancy. Appl Phys Lett, 1987, 51: 511-513
[10]  21 刘鸿, 阮成礼. 高增益砷化镓光导开关中的光致电离效应. 光学学报, 2009, 29: 496-499
[11]  22 Klappenberger F, Renk K F, Summer R, et al. Electric-field-induced reversible avalanche breakdown in a GaAs microcrystal due to crossband gap impact ioinzation. Appl Phys Lett, 2003, 83: 704-706??
[12]  25 Southgate P D. Recombination processes following impact ionization by high-field domain in Gallium Arsenide. J Appl Phys, 1967, 38:4589-4595??
[13]  27 Logan R A, Chynoweth A G, Cohen B G. Avalanche breakdown in gallium arsenide p-n junction. Phys Rev, 1962, 128: 2518-2523??
[14]  30 Copeland J A. LSA oscillator-diode theory. J Appl Phys, 1967, 38: 3096-3101??
[15]  31 Shoji M. Theory of transverse extension of Gunn domains. J Appl Phys, 1970, 41: 774-778??
[16]  33 Liu S G. Infrared and microwave radiations associated with a current-controlled instability in GaAs. Appl Phys Lett, 1966, 9: 79-81??
[17]  34 Chang K K N, Liu S G, Prager H J. Infrared radiation from bulk GaAs. Appl Phys Lett, 1966, 8: 196-198??
[18]  1 刘鸿, 阮成礼. 本征砷化镓光导开关中的流注模型. 科学通报, 2008, 53: 2181-2185
[19]  4 Zutavern F J, Glover S F, Reed K W, et al. Fiber-optically controlled pulsed power switches. IEEE Trans Plasm Sci, 2008, 36: 2533-2540??
[20]  7 Loubriel G M, Zutavern F J, O’Malley M W, et al. High gain GaAs switches for impulse sources; Measurement of the speed of currentfilaments. In: Proceedings of IEEE 21st Power Modulator Symp (IEEE, Costa Mesa, CA, NY, 1994), 1994. 120-123
[21]  10 Islam N E, Schamiloglu E, Fleddermann C B. Characteristics of a semi-insulating GaAs photoconductive semiconductor switch for ultrawideband high power microwave applications. Appl Phys Lett, 1998, 73: 1988-1990??
[22]  11 Kayasit P, Joshi R P, Islam N, et al. Transient and steady state simulations of internal temperature profiles in high-power semi-insulatingGaAs photoconductive switches. J Appl Phys, 2001, 89: 1411-1417??
[23]  12 Joshi R P, Kayasit P, Islam N E, et al. Simulation studies of persistent photoconductivity and filamentary conduction in opposed contactsemi-insulating GaAs high power switches. J Appl Phys, 1999, 86: 3833-3843??
[24]  13 Islam N E, Schamiloglu E, Fleddermann C B, et al. Analysis of high voltage operation of gallium arsenide photoconductive switches usedin high power applications. J Appl Phys, 1999, 86: 1754-1758??
[25]  14 Hjalmarson H P, Kambour K, Myles C W, et al. Continuum models for electrical breakdown in photoconductive semiconductor switches.In: Proceedings of 16th International IEEE Pulsed Power Conference, Albuquerque, NM, USA, 2007. 446-450
[26]  18 Martin G M. Optical assessment of the main electron trap in bulk semi-insulating GaAs. Appl Phys Lett, 1981, 39: 747-748??
[27]  19 Neumann A. Slow domains in semi-insulating GaAs. J Appl Phys, 2001, 90: 1-26??
[28]  20 Kroemer H. Detailed theory of the negative conductance of bulk negative mobility amplifiers, in the limit of zero ion density. IEEE TransElectron Devices, 1967, ED-14: 476-492??
[29]  23 Heeks J S. Some properties of the moving high-field domain in Gunn effect devices. IEEE Trans Electron Devices, 1966, ED-13: 68-79??
[30]  24 Owens J, Kino G S. Experimental studies of Gunn domains and avalanching. J Appl Phys, 1971, 42: 5019-5028??
[31]  26 Shichijo H, Hess K. Band-structure-dependent transport and impact ionization in GaAs. Phys Rev B, 1981, 23: 4197-4207??
[32]  28 Stillman G E, Wolfe C M, Rossi J A, et al. Unequal electron and hole impact ionization coefficients in GaAs. Appl Phys Lett, 1974, 24:471-474??
[33]  29 杨宏春, 阮成礼, 张克迪, 等. 线性GaAs 光电导开关的饱和参数研究. 科学通报, 2008, 53: 1516-1522
[34]  32 Thim H W. Linear microwave amplification with Gunn oscillators. IEEE Trans Electron Devices, 1967, ED-14: 517-522??
[35]  35 Liu H, Ruan C L. “S-shaped” negative differential conductivity of high gain GaAs photoconductive switches. In: 8th International IEEEPacific Rim Conference on Lasers and Electro-Optics, Shanghai, China, 2009

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133