全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

长链正构烷烃主峰碳数作为判别草本和木本植物指标的讨论:来自表土和现代植物的证据

, PP. 774-780

Keywords: 表土,现代植物,长链正构烷烃,分子分布,主峰碳数

Full-Text   Cite this paper   Add to My Lib

Abstract:

对我国范围内上百个表土的长链正构烷烃研究结果进行了总结(其中62个为本项研究所获得),发现尽管上覆的现代植被类型具有很大差别,但表土中高等植物来源的长链正构烷烃主要以n-C29和n-C31为主峰.同时,对文献中报道的超过300种现代植物长链正构烷烃研究结果的统计表明,无论木本植物、草本植物还是灌木植物,其长链正构烷烃同样主要以n-C29和n-C31为主峰.综合对现代植物以及表土研究结果的分析,认为表土中长链正构烷烃分子分布特征与来源植被之间的关系受多种因素的影响,较为复杂,两者之间的关系很难用一种简单的模式来确定.

References

[1]  2 Schwark L, Zink K, Lechterbeck L. Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticularlipid biomarkers and pollen records from lake sediments. Geology, 2002, 30: 463-466??
[2]  3 吕厚远, 刘东生, 吴乃琴, 等. 末次间冰期以来黄土高原南部植被演替的植物硅酸体记录. 第四纪研究, 1999, 4: 336-349
[3]  6 张虎才, 杨明生, 张文翔, 等. 洛川黄土剖面S4 古土壤及相邻黄土层分子化石与植被变化. 中国科学D 辑: 地球科学, 2007, 37:1634-1642
[4]  8 王志远, 喻建华, 顾延生, 等. 浙江长兴更新世红土中的分子化石及其古环境意义. 海洋地质与第四纪地质, 2002, 22: 97-102
[5]  11 Cranwell P A. Lipid geochemistry of sediments from Upton Broad, a small productive lake. Org Geochem, 1984, 7: 25-37??
[6]  15 崔景伟, 黄俊华, 蒲阳, 等. 湖北清江和尚洞洞顶植物叶片和土壤的类脂物对比及其意义. 第四纪研究, 2007, 28: 35-42
[7]  16 钟艳霞, 薛骞, 陈发虎. 黄土高原西部地区现代植被及其表土正构烷烃分布模式研究. 第四纪研究, 2009, 29: 767-773
[8]  17 Sachse D, Radke J, Gleixner G. δD values of individual n-alkanes from terrestrial plants along a climatic gradient―Implications for the sedimentarybiomarker record. Org Geochem, 2006, 37: 469-483??
[9]  22 Chikaraishi Y, Naraoka H. Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry, 2003,63: 361-371??
[10]  23 Chikaraishi Y, Naraoka H, Poulson S R. Carbon and hydrogen isotopic fractionation during lipid biosynthesis in a higher plant (Cryptomeria japonica).Phytochemistry, 2004, 65: 323-330??
[11]  24 Conte M H, Weber J C, Carlson P J, et al. Molecular and carbon isotopic composition of leaf wax in vegetation and aerosols in a northern prairieecosystem. Oecologia, 2003, 135: 67-77
[12]  25 Gormann R, Schreiber L, Kolodziej H. Cuticular wax profiles of leaves of some traditionally used African Bignoniaceae. Z Naturforsch, 2004, 59:631-635
[13]  26 Huang Y, Eglinton G, Ineson P, et al. Absence of carbon isotope fractionation of individual n-alkanes in a 23-year field decomposition experimentwith Calluna valgaris. Org Geochem, 1997, 26: 497-501??
[14]  27 Jansen B, Nierop K, Hageman J, et al. The straight-chain lipid biomarker composition of plant species responsible for the dominant biomass productionalong two altitudinal transects in the Ecuadorian Andes. Org Geochem, 2006, 37: 1514-1536??
[15]  28 Kawamura K, Ishimura Y, Yamazaki K. Four years’ observations of terrestrial lipid class compounds in marine aerosols from the western NorthPacific. Glob Biogeochem Cycle, 2003, 17: 1003, doi:10.1029/2001GB001810??
[16]  29 Krull E, Sachse D, Mügler I, et al. Compound-specific δ13C and δ2H analyses of plant and soil organic matter: A preliminary assessment of the effectsof vegetation change on ecosystem hydrology. Soil Biol Biochem, 2006, 38: 3211-3221??
[17]  31 Liu W G, Huang Y S. Compound-specific D/H ratios and molecular distributions of higher plant leaf waxes as novel paleoenvironmental indicatorsin the Chinese Loess Plateau. Org Geochem, 2005, 36: 851-860??
[18]  32 Lockheart M J, Van Bergen P F, Evershed R P. Variations in the stable carbon isotope compositions of individual lipids from the leaves of modernangiosperms: Implications for the study of higher land plant-derived sedimentary organic matter. Org Geochem, 1997, 26: 137-153??
[19]  33 Lockheart M J, Van Bergen P F, Evershed R P. Chemotaxonomic classification of fossil leaves from the Miocene Clarkia lake deposit, Idaho,USA based on n-alkyl lipid distributions and principal component analyses. Org Geochem, 2000, 31: 1223-1246??
[20]  36 Nichols J E, Booth R K, Jackson S T, et al. Paleohydrologic reconstruction based on n-alkane distributions in ombrotrophic peat. Org Geochem,2006, 37: 1505-1513??
[21]  37 Nott C J, Xie S C, Avsejs L A, et al. n-alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation.Org Geochem, 2000, 31: 231-235??
[22]  47 Liu W G, Huang Y S, An Z S, et al. Summer monsoon intensity controls C4/C3 plants abundance during the last 35 ka in the Chinese Loess Plateau:Carbon isotope evidence from bulk organic matter and individual leaf waxes. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 220: 243-254??
[23]  1 Sun X J, Song C Q, Wang F Y, et al. Vegetation history of the Loess Plateau of China during the last 100000 years based on pollen data. Quat Int,1997, 37: 25-36??
[24]  4 杨明生, 张虎才, 雷国良, 等. 洛川黄土剖面末次冰期间冰段弱古土壤(L1SS1)分子化石及其古植被与古环境. 第四纪研究, 2006,26: 976-984
[25]  5 钟艳霞, 陈发虎, 安成邦, 等. 陇西黄土高原秦安地区全新世植被的讨论. 科学通报, 2007, 52: 318-323
[26]  7 梁斌, 谢树成, 顾延生, 等. 安徽宣城更新世红土正构烷烃分布特征及其古植被意义. 地球科学, 2005, 30: 129-132
[27]  9 Eglinton G, Hamilton R J. Leaf epicuticular waxes. Science, 1967, 156: 1322-1334??
[28]  10 Freeman K H, Hayes J M, Trendel J M, et al. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature,1990, 343: 254-256??
[29]  12 Rieley G, Collier R J, Jones D M, et al. The biogeochemistry of Ellesmere Lake, U.K.—I: Source correlation of leaf wax inputs to the sedimentarylipid record. Org Geochem, 1991, 17: 901-912??
[30]  13 王永莉, 方小敏, 白艳, 等. 中国气候(水热)连续变化区域现代土壤中类脂物分子分布特征及其气候意义. 中国科学D 辑: 地球科学, 2007, 37: 386-396
[31]  14 王志远, 刘占红, 易轶, 等. 不同气候和植被区现代土壤类脂物分子特征及其意义. 土壤学报, 2003, 40: 967-970
[32]  18 Maffei M. Chemotaxonomic significance of leaf wax alkanes in the Gramineae. Biochem Syst Ecol, 1996, 24: 53-64??
[33]  19 Otto A, Simpson M J. Degradation and preservation of vascular plant-derived biomarkers in grassland and forest soils from Western Canada. Biogeochemistry,2005, 74: 377-409??
[34]  20 崔景伟, 黄俊华, 谢树成. 湖北清江现代植物叶片正构烷烃和烯烃的季节性变化. 科学通报, 2008, 53: 1318-1323
[35]  21 Bi X H, Sheng G Y, Liu X H, et al. Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes. Org Geochem,2005, 36: 1405-1417??
[36]  30 李宝才, 董玉莲, 李超, 等. 秋茄和榕树叶片中正构烷烃分布和单体化合物δ13C 值及其光合作用. 热带海洋学报, 2003, 22: 62-69
[37]  34 Marseille F, Disnar J, Guillet B, et al. n-Alkanes and free fatty acids in humus and A1 horizons of soils under beech, spruce and grass in the Massif-Central (Mont-Lozère), France. Eur J Soil Sci, 1999, 50: 433-441
[38]  35 Mügler I, Sachse D, Werner M, et al. Effect of lake evaporation on δD values of lacustrine n-alkanes: A comparison of Nam Co (Tibetan Plateau)and Holzmaar (Germany). Org Geochem, 2008, 39: 711-729??
[39]  38 Rommerskirchen F, Plader A, Eglinton G, et al. Chemotaxonomic significance of distribution and stable carbon isotopic composition oflong-chain alkanes and alkan-1-ols in C4 grass waxes. Org Geochem, 2006, 37: 1303-1332??
[40]  39 Sessions A L. Seasonal changes in D/H fractionation accompanying lipid biosynthesis in Spartina alterniflora. Geochim Cosmochim Acta, 2006,70: 2153-2162??
[41]  40 Wiesenberg G L B, Schmidt M W I, Schwark L. Plant and soil lipid modifications under elevated atmospheric CO2 conditions: I. Lipid distributionpatterns. Org Geochem, 2008, 39: 91-102??
[42]  41 Xie S C, Nott C J, Avsejs L A, et al. Molecular and isotopic stratigraphy in ombrotrophic mire for paleoclimate reconstruction. Geochim CosmochimActa, 2004, 68: 2849-2862??
[43]  42 郭方琴, 张成君, 张云, 等. 兰州市大气沉降尘中正构烷烃分布及环境意义. 环境科学与技术, 2009, 32: 9-11
[44]  43 Xie M J, Wang G H, Hu S Y, et al. Aliphatic alkanes and polycyclic aromatic hydrocarbons in atmospheric PM10 aerosols from Baoji,China: Implications for coal burning. Atmos Res, 2009, 93: 840-848??
[45]  44 谢树成, 易轶, 刘育燕, 等. 中国南方更新世网纹红土对全球气候变化的响应: 分子化石记录. 中国科学D 辑: 地球科学, 2003, 33:411-417
[46]  45 王志远, 谢树成, 陈发虎. 临夏塬堡黄土地层S1 古土壤中的正构烷烃及其古植被意义. 第四纪研究, 2004, 24: 231-235
[47]  46 钟艳霞. 末次冰期以来黄土高原西部地区环境变化的黄土有机地球化学记录研究. 博士学位论文. 兰州: 兰州大学, 2008. 60-90

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133